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Abstract

We develop tools for utilizing correspondence experiments to detect illegal discrimination
by individual employers. Employers violate US employment law if their propensity to contact
applicants depends on protected characteristics such as race or sex. We establish identification
of higher moments of the causal effects of protected characteristics on callback rates as a function
of the number of fictitious applications sent to each job ad. These moments are used to bound
the fraction of jobs that illegally discriminate. Applying our results to three experimental
datasets, we find evidence of significant employer heterogeneity in discriminatory behavior,
with the standard deviation of gaps in job-specific callback probabilities across protected groups
averaging roughly twice the mean gap. In a recent experiment manipulating racially distinctive
names, we estimate that at least 85% of jobs that contact both of two white applications and
neither of two black applications are engaged in illegal discrimination. To assess more carefully
the tradeoff between type I and II errors presented by these behavioral patterns, we consider
the performance of a series of decision rules for investigating suspicious callback behavior under
a simple two-type model that rationalizes the experimental data. Though, in our preferred
specification, only 17% of employers are estimated to discriminate on the basis of race, we find
that an experiment sending 10 applications to each job would enable accurate detection of 7-
10% of discriminators while falsely accusing fewer than 0.2% of non-discriminators. A minimax
decision rule acknowledging partial identification of the joint distribution of callback rates yields
higher error rates but more investigations than our baseline two-type model. Our results suggest
illegal labor market discrimination can be reliably monitored with relatively small modifications
to existing audit designs.
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1 Introduction

It is illegal to use information on age, race, or sex to make employment decisions in the United

States. Though economists are often called upon to evaluate claims of illegal employment discrim-

ination, academic research in labor economics provides surprisingly little methodological guidance

for assessing whether particular employers are discriminating. Rather, the focus of the volumi-

nous empirical literature on labor market discrimination (Altonji and Blank, 1999; Guryan and

Charles, 2013) has centered around methods for establishing whether markets discriminate against

particular groups of workers on average. At least since the work of Becker (1957), however, it has

been recognized that employers may vary substantially in the extent to which they are discrimina-

tory, and that this variation (in particular, the difference in prejudice between the marginal and

average firm) influences the adverse impact of discrimination on outcomes for minority workers

(Charles and Guryan, 2008). It is therefore essential to understand heterogeneity in discrimination

across employers, both for assessing the economic consequences of discrimination and for enforcing

anti-discrimination law.

This paper develops tools for detecting discrimination by individual employers. The proposed

methods rely on correspondence experiments in which fictitious applications with randomly assigned

characteristics are submitted to actual job vacancies (Bertrand and Duflo, 2017 provide a review).

A key advantage of correspondence studies over traditional in-person audits is that the perceived

traits of an applicant can be independently manipulated, revealing the ceteris paribus influence of

protected attributes such as race or gender on employer behavior. Starting with the seminal work

of Bertrand and Mullainathan (2004), it has become standard to sample thousands of jobs and send

each of them four applications. Bertrand and Mullainathan found callback rates to distinctively

white names to be roughly 50% higher than those to distinctively black names, leading them to

conclude that discrimination was operative in the markets they studied. Our basic insight is that

such a study is best viewed as an ensemble of many small exchangeable experiments. From this

ensemble, one can infer properties of the distribution of discriminatory behavior which can, in turn,

be used to form posteriors about the probability that any given employer is discriminating. These

posteriors can then aid in making decisions about which employers to investigate.

To ground our analysis, we develop a formal econometric framework for analyzing correspon-

dence studies. The foundation of this framework is the assumption that callback outcomes at a

particular job constitute independent Bernoulli trials governed by job- and race-specific callback

probabilities. We show that this assumption is testable and document empirical support for it in

correspondence study data. Treating the pair of callback rates at each job as a random draw from

a stable super-population, we denote the joint cumulative distribution function of white and black

callback probabilities by G (pw, pb) : [0, 1]2 → [0, 1]. We then establish which moments of G (·, ·)
are identified as a function of the number of applications of each race sent to each job. Though

our focus is on correspondence studies, these results are more broadly applicable to ensembles of

randomized experiments implemented across many sites.
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Building on our identification results, we propose shape-constrained Generalized Method of

Moment (GMM) estimators of the identified moments of the callback distribution that require the

moment estimates be rationalizable by a coherent bivariate probability distribution. We apply

these estimation methods to three experimental datasets: the original Bertrand and Mullainathan

(2004) study of racial discrimination, a larger, more recent study by Nunley et al. (2015) of racial

discrimination in the market for recent college graduates, and a study by Arceo-Gomez and Campos-

Vasquez (2014) that used eight applications per job. In each study, we find overwhelming evidence

of heterogeneity across jobs in the extent of discrimination. In the more recent studies, where third

and higher moments are identified, we find evidence of skew and thick tails in the distribution of

discriminatory behavior: while most firms barely discriminate, a few discriminate very heavily.

Next we consider what race-specific callback distributions G (·, ·) are consistent with the iden-

tified moments of the callback distribution. Of particular interest is the fraction of jobs exhibiting

any discrimination. We derive an analytic lower bound on the fraction of jobs that engage in dis-

crimination conditional on the total number of callbacks. We then show how sharp bounds can be

computed via a linear programming routine that works with a discrete approximation to G (·, ·) to

characterize the relevant moment constraints. These bounds extend some results in the literature

on large scale inference concerned with identification of the fraction of null hypotheses that are

true (Benjamini and Hochberg, 1995; Efron et al., 2001; Storey, 2002; Efron, 2004, 2012). We

find that the linear programming bounds are significantly tighter than our analytic bound and are

informative even among the sub-population of jobs calling back no applications. In the Bertrand

and Mullanaithan experiment, we estimate that at least half of the jobs calling back one, two, or

three of the four applications sent to each job are discriminating based upon race. By contrast, as

few as 20% of the jobs that call back all four applications are discriminating and as few as 5% of

the jobs that call back no applications are discriminating.

These bounds on the fraction of jobs that discriminate constitute a form of “indirect evidence”

(Efron, 2010) that can be used to refine an assessment of whether any individual employer is

discriminating. Consider, for example, the case of a job sent four applications that calls back only

the two white applications. Under the null hypothesis that callbacks do not depend on race at this

job, the probability of only the two white applications being contacted given that two applications

have been called back in total is 1/6. But in the Bertrand and Mullainathan data, we estimate that

at most 56% of the jobs that call back two applications in total are not discriminating, so only a

very weak presumption of innocence is justified. Moreover, calling back only the white applications

is relatively common, occuring in 34% of the cases where two total applications are called back.

Bayes’ rule then implies the probability that such a job is not discriminating is at most 1
6×

.56

.34 ≈ .27.

Here, the indirect evidence tips the scale slightly in the employer’s favor but allows us to conclude

that, at most, 27% of such jobs are not discriminating on the basis of race. This need not be the

case in general; in the Nunley et al. (2015) experiment, for example, we estimate that at most 15%

of jobs that contact two white and zero black applicants are not discriminating.

Making decisions based upon lower-bound posterior probabilities of discrimination may yield
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overly conservative inferences. We develop a decision theoretic framework formalizing the prob-

lem of a hypothetical “auditor” such as the Equal Employment Opportunity Commission (EEOC)

that has been charged with making decisions about whether to investigate particular employers.

Specifically, we consider Bayes auditing rules under a linear loss function where each type I and

type II error incurs a fixed cost. The Bayes decision rule takes the usual form, where investiga-

tions are conducted when the posterior probability of discrimination crosses a fixed threshold. To

approximate the Bayes decision problem, we work with a mixed logit representation of the data

generating process (DGP) in the Nunley et al. (2015) experiment that also incorporates application

characteristics other than race. This model provides a good empirical fit to the Nunley et al. (2015)

data and reproduces the qualitative patterns uncovered in our GMM analysis. We use the mixed

logit estimates to form empirical Bayes posteriors of the probability that any given employer is

discriminating. For instance, the posterior probability that an employer that contacts only the

two white applications is discriminating is 62%. But when the two white applications have other

characteristics indicating they are of low quality and the two black applications have high-quality

characteristics, this posterior rises to 80%.

We then compute the tradeoff between type I and type II errors implied by the logit DGP

under different experimental designs. With only two white and two black applications per job, it

is difficult to reliably identify discriminating employers. But with just 10 applications per job, we

find that it is possible to correctly identify 7% of discriminating jobs with type I error rates of less

than 0.2%. Moreover, we show that by optimizing over combinations of race and other resume

characteristics to maximize the amount of information generated by the experiment, it is possible

to boost the fraction of discriminators detected to roughly 10% while continuing to hold the type

I error rate under 0.2%. By contrast, conducting investigations based upon a frequentist p-value

cutoff of 0.01 tends to yield substantially more accusations, the majority of which are erroneous

accusations of non-discriminators.

Finally, we consider how our assessment of various auditing rules changes if we relax the assump-

tion that callbacks are actually generated by the logit DGP and instead consider the broader class

of callback distributions capable of rationalizing the Nunley et al. (2015) experiment. A natural

benchmark for decisionmaking with an unknown risk function is the minimax auditing rule, which

minimizes the maximum risk that can arise given the identified moments of G (·, ·). We develop a

linear programming algorithm for computing an estimate of the maximum risk function for classes

of decision rules ordered by their logit posteriors. Applying our algorithm, we find that the gap

between logit and worst case risk is decreasing in the share of jobs investigated. This pattern leads

a minimax auditor to investigate more jobs than would an auditor who knew for certain that the

logit DGP governed behavior. The minimax auditor, it turns out, is more concerned with the pos-

sibility that she is passing over a vast number of jobs engaged in modest amounts of discrimination

than that a few non-discriminators are improperly investigated.

Our results highlight the potential of experimental methods to guide regulatory enforcement.

Because employers vary tremendously in their propensity to discriminate against protected groups,
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regulators charged with enforcing anti-discrimination laws face a difficult inferential task. The

methods developed here treat this task as an exercise in large scale testing, which serves to disci-

pline the conclusions drawn regarding particular employers. Our findings suggest that accurately

monitoring illegal discrimination in online labor markets is feasible with relatively small modifica-

tions to conventional audit designs. Analogous methods are likely to be useful in other contexts in

which policymakers and researchers seek to draw conclusions about specific individuals using noisy

observations across many units. Candidates for such applications include evaluations of teachers,

schools, hospitals, and neighborhoods (Chetty et al., 2014b; Angrist et al., 2017; Hull, 2018; Chetty

and Hendren, 2018; Chetty et al., 2018).

The rest of the paper is structured as follows. The next section offers a formal definition of

employer discrimination in resume correspondence experiments. Section 3 lays out the problem of

an auditor seeking to identify discriminatory employers with correspondence study data. Section

4 develops identification results for moments of G(·, ·) and bounds on posterior probabilities of

discrimination. Section 5 describes the data, and Section 6 uses it to test our modeling framework.

Section 7 provides estimated moments of G(·, ·) and Section 8 reports posterior bounds. Section

9 develops and estimates a mixed logit model of callback decisions, and Section 10 uses the logit

estimates to evaluate prospects for detecting discrimination in alternative experimental designs.

Section 11 contrasts the logit results with a minimax analysis acknowledging underidentification of

G(·, ·). Section 12 offers concluding thoughts.

2 Defining Discrimination

Title VII of the Civil Rights Act of 1964 prohibits employment discrimination on the basis of race

and sex, while the Age Discrimination Act of 1975 prohibits certain forms of discrimination on

the basis of age. Violations of these statutes typically involve one of two types of claims. The

first, disparate treatment, consists of employment practices that explicitly treat potential employees

unequally based upon protected characteristics. While economists have debated whether such

behavior arises from statistical discrimination versus racial animus (Guryan and Charles, 2013),

the law makes no distinction between these motives: both are clearly illegal (Kleinberg et al., 2019).

The second sort of claim, disparate impact, involves employment practices that, while not explicitly

based on protected characteristics, clearly work to disadvantage members of such groups without

offering a corresponding productive justification.

Guided by these legal doctrines, we now develop a formal notion of discrimination tailored to

the analysis of correspondence studies. To simplify exposition we focus on race, which we code

as binary (“white”/ “black”), with the understanding that other protected characteristics such as

gender or age can play the same role. Suppose that we have a sample of J jobs with active vacancies.

To each of these jobs, we send Lw applications with distinctively white names and Lb applications

with distinctively black names as in Bertrand and Mullainathan (2004), for a total of L = Lw +Lb

applications. Denote the race associated with the name used in application ` ∈ {1, ..., L} to job
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j ∈ {1, ..., J} as Rj` ∈ {w, b}. Let the function Yj` (r) : {w, b} → {0, 1} denote whether job j would

call back application ` as a function of that application’s assigned race. Note that this definition

of potential outcomes builds in the Stable Unit Treatment Value Assumption (SUTVA) of Rubin

(1980) by ruling out dependence on the races assigned to other resumes, including other applications

to the same job {Rjk}k 6=`. Observed callbacks decisions are then given by Yj` = Yj` (Rj`).

When Yj` (w) 6= Yj` (b) job j has engaged in racial discrimination with application `. Notably,

even if racially distinctive names influence employer behavior only through their role as a proxy for

parental background (Fryer and Levitt, 2004), using the names at any point in the hiring process

is likely to be viewed by courts as a pretext for discrimination (see, e.g., the discussion in U.S.

Equal Employment Opportunity Commission v. Target Corporation, 460 F.3d 946, 7th Cir. Wis.

2006). While courts are typically interested in establishing whether a particular plaintiff experienced

discrimination in precisely this sense, we will take the perspective of a regulator interested in

assessing prospectively whether an employer systematically treats applicants differently based upon

race. Such “systematic” forms of discrimination are also relevant in establishing class certification

in class action suits. Formalizing this notion requires some additional assumptions regarding how

employers behave on average.

To this end, we work with the following representation of potential outcomes:

Yj`(r) = Yj(r, Uj`),

where Yj(·) is a job-specific decision rule and Uj` represents all factors that affect employer j’s

decision to contact application ` other than race. These factors include the attributes other than

race assigned to the resume as well as unobserved fluctuations in conditions at the job such as

changes in the time available for reading applications. We normalize the marginal distribution of

Uj` to be uniform, an assumption that is without loss of generality since Yj(·) is an unrestricted

non-separable function. Our first substantive assumption is that these unobserved factors are

independent across applications.

Assumption 1. The factors that influence callbacks are independent and identically distributed

across applications at each job:

Uj`|Rj1...RjL
iid∼ Uniform(0, 1).

Note that random assignment of racially distinctive names to applications guarantees independence

of Uj` from {Rjk}Lk=1. The key behavioral restriction in Assumption 1 is that the Uj` are mutually

independent, which implies that each job’s decision-making is characterized by a stable decision rule

applied independently to each resume. This rules out, for example, a scenario in which the job calls

back the first qualified applicant and disregards all subsequent applications. As we discuss later,

this restriction turns out to be testable, and we find that it provides a good empirical approximation

to behavior in the correspondence experiments we study.

Assumption 1 implies that each job is associated with a stable pair of race-specific callback

6



probabilities, defined as follows:

pjr ≡
∫ 1

0
Yj (r, u) du, r ∈ {b, w}.

The probability pjr may be interpreted as the callback rate that would emerge in a hypothetical

experiment in which a large number of applications of race r are sent to job j. Assumption 1

implies that callbacks take the form of (race-specific) binomial trials governed by these probabilities.

Letting Cjr =
∑L

`=1 1 {Rj` = r}Yj` denote the number of applications of race r to job j that were

called back, we can write the probability Pr (Cjw = cw, Cjb = cb|pjw, pjb) that employer j calls back

cw out of Lw white applications and cb out of Lb black applications as:

f (cw, cb|pjw, pjb) =

(
Lw

cw

)(
Lb

cb

)
pcwjw (1− pjw)Lw−cw pcbjb (1− pjb)Lb−cb . (1)

We are now ready to offer a definition of systematic discrimination, which we will henceforth

refer to simply as discrimination.

Definition. Job j engages in discrimination when pjb 6= pjw.

We can now label discriminatory jobs with the indicator function Dj = 1{pjb 6= pjw}. Note that

this definition is prospective in that an employer with Dj = 1 will eventually discriminate against

an applicant, though it may not do so in any particular finite sample. Indeed, it is likely that

many of the jobs sampled in audit experiments are engaging in illegal discrimination but have not

discriminated against any of the fictitious applicants in the study because none of the fictitious

applicants would have been called back regardless of their race.

3 Ensembles and Decision Rules

The above framework treats each job’s callback decisions as a set of race-specific Bernoulli trials.

We next consider what can be learned from a collection of experiments conducted at many jobs.

This idea is formalized in the following exchangeability assumption on the jobs.

Assumption 2. Race-specific callback probabilities are independent and identically distributed:

pjw, pjb
iid∼ G (·, ·) .

The distribution function G (pw, pb) : [0, 1]2 → [0, 1] describes the population of jobs from

which a study samples. In practice, audit studies usually draw small random samples of jobs from

online job boards. The iid assumption abstracts from the fact that there are a finite number of

jobs on these boards. Note that by virtue of random assignment (Assumption 1) pjw and pjb are

independent of the racial mix of applications to job j as well as any other resume characteristics

that are randomized.

7



Assumption 2 implies that the unconditional distribution of callbacks can be expressed as a

mixture of binomial trials. Let Cj ≡ (Cjw, Cjb) denote the callback counts for job j. We denote

the unconditional probability of observing the callback vector c = (cw, cb) by

f̄ (c) ≡ Pr (Cj = c)

=

∫
f (cw, cb|pw, pb) dG (pw, pb) . (2)

The distribution G (·, ·) will serve as a key object of interest in our analysis. One reason for

interest in G (·, ·) is that it characterizes both the prevalence and extent of discrimination in a

population. For instance, the proportion of jobs that are not engaged in discrimination can be

written:

π0 ≡ Pr (Dj = 0) =

∫
dG (p, p) .

A second reason for interest in G (·, ·) lies in its potential forensic value as a tool for identifying

which jobs are discriminating. The quantity

π (c) ≡ Pr (Dj = 1|Cj = c)

gives the proportion of jobs with callback vector c that are discriminating. Though this quantity

has a clear frequentist interpretation as the fraction of discriminators that would be found under

repeated sampling, we can also think of it as giving a posterior probability of discrimination given

the “evidence” Cj . Specifically, invoking Bayes’ rule, we can write this posterior as a functional of

the “prior” G (·, ·):

π (c) =
Pr (Cj = c|Dj = 1)

(
1− π0

)
f̄ (c)

=
1− π0

f̄ (c)

∫
pw 6=pb

f (cw, cb|pw, pb) dG (pw, pb)

≡ P

 c︸︷︷︸
direct

, G (·, ·)︸ ︷︷ ︸
indirect

 .

The dependence of π (c) on G (·, ·) is an example of what Efron (2010) refers to as “indirect evi-

dence.” To understand the logic of incorporating indirect evidence, suppose π0 = 1 so that no jobs

discriminate. Then π (c) = 0 regardless of job j’s callback outcomes – any seemingly suspicious

callback decisions are due to chance. Likewise, if π0 = 0, all jobs are discriminators and there is no

need for direct evidence on the behavior of particular jobs. But in intermediate cases, where some

fraction of jobs are discriminators, and some are not, it is optimal to blend the direct evidence Cj

from a particular job with contextual information on the population G (·, ·) from which that job

was drawn to make decisions. We next analyze how exactly such indirect evidence should feature

in decision-making under uncertainty.
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The Auditor’s Problem

Consider the problem of an auditor who knows the distribution G (·, ·) and aims to decide which

jobs to investigate for the presence of illegal discrimination using a dataset of callbacks {Cj}Jj=1

as evidence. The auditor uses a deterministic decision rule δ (c) : {0, ..., Lw} × {0, ..., Lb} → {0, 1}
that maps the callback vector c = (cw, cb) to a binary inquiry decision.1

The auditor’s loss function from applying a decision rule δ (·) to a dataset of J jobs is:

LJ (δ) =
J∑
j=1

δ (Cj) (1−Dj)︸ ︷︷ ︸
Type I

κ+ [1− δ (Cj)]Dj︸ ︷︷ ︸
Type II

γ

 . (3)

This loss function places a cost κ on investigating “innocent” jobs with Dj = 0 (type I errors) and

a cost γ of not investigating “guilty” jobs with Dj = 1 (type II errors). Because the {Dj}Jj=1 are

not known, the auditor minimizes expected loss (i.e. risk), which we denote by R:

RJ (G, δ) ≡ E [LJ (δ)]

=

J∑
j=1

E [δ (Cj) (1− P (Cj , G))κ+ [1− δ (Cj)]P (Cj , G) γ]

= JE [δ (Cj) (1− P (Cj , G))κ+ [1− δ (Cj)]P (Cj , G) γ] ,

where E [·] denotes the expectation operator, the second line follows from iterated expectations,

and the third uses that the {Cj , Dj}Jj=1 are iid across jobs. The following Lemma, which mirrors

a standard result in statistical decision theory (e.g., DeGroot, 2004, Theorem 8.11.1), establishes

that the optimal strategy of the auditor is to investigate jobs that exceed a posterior threshold.

Lemma 1 (Posterior Threshold Rule). The decision rule δ (Cj) = 1
{
P (Cj , G) > κ

γ+κ

}
minimizes

RJ (G, δ).

Proof. Risk can be rewritten:

RJ (G, δ) = J

Lw∑
cw=0

Lb∑
cb=0

∫
{δ (cw, cb) (1− P (cw, cb, G))κ+ [1− δ (cw, cb)]P (cw, cb, G) γ}

× f (cw, cb|pw, pb) dG (pw, pb) .

Minimizing this integral pointwise, we see that for any c = (cw, cb) such that P (c,G) < κ
γ+κ , the

integrand is minimized by setting δ (c) = 0. Otherwise, risk is minimized by setting δ (c) = 1.

One can think of the decision rule δ (Cj) as offering an economically motivated definition of “rea-

sonable doubt”: when the posterior probability of discriminating crosses the cost-based threshold

κ/ (κ+ γ), it is rational to conduct an inquiry.

1We confine ourselves to deterministic rules because randomized decision rules violate commonly held horizontal
equity principles.
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Remark 1. Recent work by economists emphasizes the role of preferences in the optimal design of

experiments (Manski, 2000; Kitagawa and Tetenov, 2018; Narita, 2019). In our setting, an auditor

might benefit from choosing the application design (Lw,Lb) in addition to the decision rule δ(·) to

minimize risk. We consider such an exercise empirically in Section 10.

Connection to Large Scale Testing

An interesting connection exists between the auditor’s problem and the literature on large scale

testing, which is concerned with deciding which hypotheses to reject based upon the results of a

very large number of tests (Efron, 2012 provides a review). A seminal contribution to this literature

comes from Benjamini and Hochberg (1995), who proposed controlling the False Discovery Rate

(FDR): the expected share of rejected null hypotheses that are true. We next show that the

auditor’s optimal decision rule will control an analogue of the FDR.

Letting NJ ≡
∑J

j=1 δ(Cj) denote the total number of investigations resulting from the auditing

rule δ(·), we can define the Positive False Discovery Rate (Storey, 2003) as:

pFDRJ = E
[
N−1
J

∑J
j=1 δ(Cj)(1−Dj)|NJ ≥ 1

]
.

In words, pFDRJ gives the proportion of investigated jobs that are not discriminating,

conditional on at least one investigation taking place. The following Lemma establishes that the

optimal decision rule controls pFDRJ at a level determined by the ratio κ/γ.

Lemma 2 (pFDRJ Control). If δ (Cj) = 1
{
P (Cj , G) > κ

γ+κ

}
then pFDRJ ≤ γ

κ+γ .

Proof. Storey (2003, Theorem 1) showed that pFDRJ = Pr(Dj = 0|δ(Cj) = 1) for any determinis-

tic decision rule δ(·) obeying Pr (δ(Cj) = 1) > 0 (see Appendix A for a self-contained proof of this

result). Therefore the optimal auditing rule δ (Cj) = 1
{
P (Cj , G) > κ

γ+κ

}
yields

pFDRJ = Pr

(
Dj = 0|P (Cj , G) >

κ

γ + κ

)
≤ Pr

(
Dj = 0|P (Cj , G) =

κ

γ + κ

)
= 1− κ

γ + κ
.

By contrast, consider an auditor who bases investigations on a classical hypothesis test δ† (Cj) that

controls size at a fixed level α̃ < 1. To simplify exposition, suppose that the test is pivotal under

the null of non-discrimination so that

Pr
(
δ† (Cj) = 1|pjw = p, pjb = p

)
= α̃, ∀p ∈ [0, 1] .
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We can write the resulting pFDRJ of this rule

Pr
(
Dj = 0|δ† (Cj) = 1

)
=

Pr
(
δ† (Cj) = 1|Dj = 0

)
π0

Pr (δ† (Cj) = 1|Dj = 0)π0 + Pr (δ† (Cj) = 1|Dj = 1) (1− π0)

≥ α̃π0

α̃π0 + 1− π0
.

To see that δ† (Cj) fails to control pFDRJ , note that limπ0↑1
α̃π0

α̃π0+1−π0 = 1: when nearly all jobs

are innocent, classical hypothesis testing will result in the vast majority of investigations being false

accusations.

Remark 2. The False Discovery Rate of Benjamini and Hochberg (1995) can be written FDRJ =

pFDRJ × Pr (NJ ≥ 1). Because Pr (NJ ≥ 1) ≤ 1, the optimal auditing rule also controls FDRJ .

Remark 3. The auditor’s risk can be written

RJ (G, δ) = J {κ× pFDRJ × Pr (δ (Cj) = 1) + γ × pFNRJ × [1− Pr (δ (Cj) = 1)]} ,

where pFNRJ = E[(J −NJ)−1∑J
j=1 (1− δ(Cj))Dj |NJ < J ] is the Positive False Nondiscovery

Rate (Storey, 2003, Corollary 4). Hence, the auditor’s marginal rate of substitution between the

Positive False Discovery and Positive False Nondiscovery rates is κ
γ

Pr(δ(C1)=1)
1−Pr(δ(C1)=1) .

Auditing under Ambiguity

The distribution G (·, ·) will not, in general, be point identified even by experiments with many

applications per job. When G is only known to lie in some identified set Θ of distributions,

many possible decision rules are consistent with rationality. Among those rules, an important

benchmark is the minimax decision rule (Wald, 1945; Savage, 1951; Manski, 2000), which minimizes

the maximum risk that may arise from the experiment. We define the maximum risk function and

the associated minimax decision rule respectively as:

RmJ (Θ, δ) ≡ sup
G∈Θ
RJ (G, δ) and δmm ≡ arg inf

δ∈D
RmJ (Θ, δ), (4)

where D is the set of deterministic decision rules.

Unlike in the case where G (·, ·) is known, an auditor that only knows G ∈ Θ cannot consult a

single posterior probability to make the decision of whether to investigate. Rather, the maximum

risk of each decision rule must be computed to obtain the minimax decision rule. The next section

establishes more carefully what features of G (·, ·) are identified by a given experimental design and

provides an approach to computing Rm (Θ, δ).

Remark 4. Rules that minimize maximum risk over a restricted set Γ of distributions were con-

sidered by Hodges et al. (1952) and Robbins (1964) and are sometimes referred to as Γ−minimax

estimators (see, e.g., Berger, 1979; Noubiap et al., 2001; Lehmann and Casella, 2006; Berger, 2013).

While the statistics literature has typically chosen the set of candidate distributions based upon
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prior beliefs, the definition in (4) restricts consideration to distributions that match the identified

features of G(·, ·).

Remark 5. The minimax decision rule δmm is also a Bayes rule if there is a Ḡ ∈ Θ such that

arg infδ∈D RJ
(
Ḡ, δ

)
= δmm. When such a Ḡ exists, we call it a least favorable distribution because

Ḡ ∈ arg supG∈ΘRJ (G, δmm) (see, e.g., Lehmann and Casella, 2006).

Remark 6. One can think of the minimax decision rule δmm as an estimator of the latent discrimi-

nation indicators {Dj}Jj=1. It is interesting to contrast δmm with standard “shrinkage” estimators,

which are typically motivated by appeal to a parametric mixing distribution that serves the role

of a prior (Kane and Staiger, 2008; Chetty et al., 2014a; Angrist et al., 2017; Chetty and Hendren,

2018; Finkelstein et al., 2017). When it has a Bayes interpretation, the minimax estimator δmm

can be thought of as shrinking towards a least favorable prior distribution Ḡ.

4 Identification of G

In this section we establish that certain moments of G (·, ·) are non-parametrically identified and

then proceed to derive bounds on the posterior probability function π (c).

Moments

From (2) we can write

f̄(cw, cb) =

(
Lw

cw

)(
Lb

cb

)
E
[
pcwjw (1− pjw)Lw−cw pcbjb (1− pjb)Lb−cb

]

=

(
Lw

cw

)(
Lb

cb

)
Lw−cw∑
x=0

Lb−cw∑
s=0

(−1)x+s

(
Lw − cw

x

)(
Lb − cb

s

)
E
[
pcw+x
jw pcb+sjb

]
. (5)

Hence, the reduced form callback probabilities can be written as linear functions of uncentered

moments µ (m,n) ≡ E
[
pmjwp

n
jb

]
=
∫
pmw p

n
b dG (pw, pb) of the latent callback probabilities.

Letting f̄ =
(
f̄ (1, 0) , ..., f̄ (Lw, 0) , ..., f̄ (Lw, Lb)

)′
denote the vector of frequencies for all pos-

sible callback outcomes excluding (0, 0) and µ = (µ (1, 0) , ..., µ (Lw, 0) , ..., µ (Lw, Lb))
′ the corre-

sponding list of moments, we can write the equations in (5) as a linear system:

f̄ = Bµ,

where B is a known non-singular square matrix of binomial coefficients. We can therefore solve the

linear system as:

µ = B−1f̄ . (6)

Hence, for a given application design (Lw, Lb), all moments µ(m,n) for 0 ≤ m ≤ Lw and 0 ≤ n ≤ Lb
are identified.
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From µ we can compute centered moments of the callback distribution, which are typically

easier to interpret. An example of particular interest is the standard deviation of discrimination

across jobs:

V [pjb − pjw]1/2 =

√
E
[
(pjb − pjw)2

]
− E [pjb − pjw]2

=

√
µ (0, 2) + µ (2, 0)− 2µ (1, 1)− µ (0, 1)2 − µ (1, 0)2 + 2µ (0, 1)µ (1, 0).

This quantity is identified for any application design that sends at least two resumes per racial

group (min {Lw, Lb} ≥ 2).

Remark 7. The variance of unit-specific treatment effects is typically treated as under-identified in

standard analyses of randomized experiments (Neyman, 1923; Heckman et al., 1997; Imbens and

Rubin, 2015). Identification is secured here by the assumption that callbacks are generated by

race-specific binomial trials with stable probabilities, essentially allowing repeated observations on

the same units with and without treatment.

Remark 8. In experiments where the application design (Lw, Lb) varies randomly across jobs, some

moments of G(·, ·) are over-identified. We exploit these over-identifying restrictions in estimation

to improve precision and test our modeling assumptions.

A Bound on Posterior Probabilities

Though the study of moments of the callback distribution G(·, ·) can shed light on underlying

heterogeneity in callback behavior, the posterior probability π (c) need not admit a representation

in terms of a finite number of moments. However, a simple analytic bound on the posterior can

be derived from an application of Bayes rule that conditions on the total number of callbacks

Cjb + Cjw to firm j. Let f̄t (c) ≡ Pr ((Cjw, Cjb) = (cw, cb)|Cjb + Cjw = t) denote the probability

mass function for callbacks in the stratum of jobs that call back t applicants in total. Similarly, let

π0
t ≡ Pr (Dj = 0|Cjb + Cjw = t) denote the share of jobs in this stratum that are not discriminating.

Letting t = cw + cb, we can then write the posterior probability of innocence as:

1− π (c) = Pr (Cj = c|Dj = 0, Cjb + Cjw = t)
π0
t

f̄t (c)
. (7)

Note that after conditioning on the total number of callbacks, the callback likelihood for non-

discriminators is free of nuisance parameters:

Pr (Cj = c|Dj = 0, Cjb + Cjw = t) =

(
Lw

cw

)(
Lb

cb

)
/

(
L

t

)
≡ f̄0

t (c) .

This ratio forms the basis of Fisher’s exact test for independence in contingency tables (Fisher,

1922). For example, with two white and two black applications and two callbacks, the probability

of both callbacks being to white applications under the null hypothesis of non-discrimination is
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f̄0
2 (2, 0) =

(
2

2

)(
2

0

)
/

(
4

2

)
=

1

6
.

Since the function f̄t (c) is directly identified by random sampling, the sole under-identified

quantity in equation (7) is π0
t , which serves as the auditor’s prior probability that an employer is

innocent knowing only that it made t callbacks in total. The following Lemma provides a tractable

bound on this quantity.

Lemma 3 (Upper Bound on Stratum Prior). π0
t ≤ minc:cw+cb=t min

{
f̄t(c)

f̄0t (c)
, 1−f̄t(c)

1−f̄0t (c)

}
.

Proof. By the law of total probability:

f̄t (c) = f̄0
t (c)π0

t + f̄1
t (c)

(
1− π0

t

)
,

where f̄1
t (c) ≡ Pr (Cj = c|Dj = 1, Cjb + Cjw = t). The result follows immediately from observing

that f̄1
t (c) ∈ [0, 1].

Plugging the upper bound of Lemma 3 into (7) therefore yields a lower bound on the posterior

probability of discrimination:

π (c) ≥ 1− f̄0
t (c)

f̄t (c)
min

c′:c′w+c′b=t
min

{
f̄t (c′)

f̄0
t (c′)

,
1− f̄t (c′)

1− f̄0
t (c′)

}
. (8)

Remark 9. A bound of the sort derived in Lemma 3 was used by Efron et al. (2001, p. 1154) to

control FDRJ in a multiple testing analysis of a microarray experiment. Storey (2002) proposed

a related class of upper bounds that are generally looser, but easier to estimate (see Armstrong,

2015 for an approach to inference on these bounds).

Sharp Bounds

While the bounds in Lemma 3 are easy to compute, they need not be sharp, as restrictions across

strata defined by the number of callbacks Cjb + Cjw have been ignored. An upper bound on the

prior π0
t that exploits all of the logical restrictions in our framework can be written as the solution

to the following constrained optimization problem:

max
G(·,·)∈G

(
L

t

)
∑

(c′w,c′b):c′w+c′b=t
f̄
(
c′w, c

′
b

) ∫ pt (1− p)L−t dG (p, p) , (9)

s.t. f̄ (cw, cb) =

(
Lw

cw

)(
Lb

cb

)∫
pcww (1− pw)Lw−cw pcbb (1− pb)Lb−cb dG (pw, pb) , (10)

for (cw = 0, .., Lw; cb = 0, .., Lb) .
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To make this problem computationally tractable, we consider a space G of discretized approxi-

mations to the unknown distribution function G (·, ·) (see Noubiap et al., 2001 and Tebaldi et al.,

2019 for related approaches). Because both the objective and constraints are linear in the proba-

bility mass function associated with G (·, ·), we can apply linear programming routines to compute

bounds given an estimate of the callback probabilities
{
f̄ (cw, cb)

}
cw,cb

(we defer the discussion of

estimation to Section 7). Details of our computational procedure are given in Appendix B.

Remark 10. Unlike the conditional bounds of Lemma 3, the solution to (9) enforces constraints

across callback strata. As a result, we can obtain informative bounds on the fraction of discrimi-

natory jobs even among those that call no applications back.

Remark 11. Analogous linear programming formulations can be used to bound any linear func-

tional of G(·, ·), including other measures of discrimination. For example, we can bound from

below the fraction of employers discriminating against whites by replacing the objective in (9) with

minG(·,·)∈G

∫
pw<pb

dG (pw, pb). We leverage this insight to bound a variety of features of G(·, ·) in

the empirical work to follow.

Maximum risk

Relying on a discretized function space G also enables us to compute the maximum risk function

RmJ consistent with a set of experimental callback probabilities.2 For a given decision rule δ (·),
RmJ (δ) can be expressed as the solution to the following optimization problem:

RmJ (δ) = max
G∈G

J

Lw∑
cw=1

Lb∑
cb=1

∫
{δ (cw, cb) 1 {pw = pb}κ+ [1− δ (cw, cb)] 1 {pw 6= pb} γ}

× f (cw, cb|pw, pb) dG (pw, pb) s.t. (10) .

When G is a family of discrete distributions, the objective and constraints are both linear in the

probability masses associated with G (·, ·) and RmJ (δ) can be computed numerically as the solution

to a linear programming problem. The minimax decision rule δmm (·) can be found by computing

RmJ (δ) for each candidate rule δ ∈ D and choosing the rule that yields lowest maximal risk.

Remark 12. With Lw white and Lb black applications there are 2(1+Lw)(1+Lb) distinct rules to

consider which, in practice, prohibits brute force enumeration when Lw + Lb > 4. To circumvent

this obstacle, we consider in our empirical application a restricted set D† ⊂ D of decision rules

that rely upon a nominal ordering of D and a threshold rule.

5 Data

We apply our methods to data from three correspondence experiments summarized in Table I.

Bertrand and Mullainathan (BM, 2004) applied to 1,112 job openings in Boston and Chicago, sub-

2See Müller and Wang (2019) for a closely related approach to minimizing weighted average risk involving dis-
cretization of unbiasedness constraints.
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mitting four applications to each job. Of the four applications, two were assigned black-sounding

names while the remaining two were assigned white-sounding names. The callback rate to applica-

tions with black sounding names was 3.1 percentage points lower than to applications with white

sounding names.

Nunley et al. (2015) studied racial discrimination in the market for new college graduates by

applying to 2,305 listings on an online job board, again sending four resumes per job opening.

Unlike Bertrand and Mullainathan, the names assigned to the four resumes were sampled without

replacement from a pool of eight names, four of which were distinctively black and four of which

were distinctively white. This led the fraction of names sent to each job that were distinctively

black to vary randomly in increments of 25% from 0% to 100%. Interestingly, the average callback

rate in the Nunley study was more than twice as high as in the Bertrand and Mullainathan study,

perhaps because the fictitious applicants were more highly educated. On average, black sounding

names had a 2.6 percentage point lower callback rate than white names.

Arceo-Gomez and Campos-Vasquez (AGCV, 2014) applied to 802 job openings through an

online job portal in a study of race and gender discrimination in Mexico City, Mexico. They sent

eight fictitious applications to each job, and the applicants were all recent college graduates. For

simplicity, we focus on gender in this experiment, as AGCV used a three-category definition of

race that is more complicated to analyze and may be less generalizable to other settings. In their

data, women are 3.4 percentage points more likely to receive callbacks than men. While the Arceo-

Gomez and Campos-Vasquez (2014) experiment looks at a very different context than Bertrand

and Mullainathan (2004) and Nunley et al. (2015), this data set allows us to demonstrate the gains

from doubling the number of applications per job opening.

6 Are Callbacks Rival?

We begin by considering tests of the binomial trials assumption (Assumption 1) that undergirds

our econometric framework. Fundamentally, we are concerned that the probability of application `

receiving a callback from job j might depend not only on its own characteristics but the character-

istics of the other applications sent to it. To assess this possibility, we fit linear probability models

of the form:

Yj` = λ0 +X ′j`λ1 + X̄ ′j`λ2 + εj`, (11)

where Xj` is a vector of application characteristics and X̄j` = (L− 1)−1∑
k 6=`Xjk gives the “leave

out” mean of those characteristics among the applications sent to job j excluding application `.

While the coefficient vector λ1 gives the direct effect of application characteristics on callbacks, the

coefficient vector λ2 captures the “peer effect” of other applications to the same job on application

`’s callback propensity. Assumption 1 restricts these peer effects to be zero (λ2 = 0).

For OLS estimates of (11) to identify a causal effect of X̄j`, we need for X̄j` to be uncorre-

lated with any omitted application characteristics Zj` that influence callbacks. In Bertrand and

Mullainathan (2004)’s study, this condition is violated because of two features of the design. First,
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application characteristics were assigned according to their joint distribution in a training sample,

making it likely that Xj` and Zj` are correlated. Second, the application characteristics were cho-

sen to yield a good match with the job (see pp. 996), leading Zj` to be correlated with its leave

out mean Z̄j` and hence with X̄j`. For this reason, we focus on the Nunley et al. (2015) study

which assigned both race and application characteristics independently of each other and across

applications. Note that even when this independence holds, Xj` and X̄j` will tend to be negatively

correlated when L is small (Angrist, 2014). Omitting Xj` from (11) would therefore tend to lead

to a spurious finding of negative peer effects. So long as Xj` is included, however, a finding that

λ2 6= 0 provides evidence of a peer effect.

Table II reports estimates of the parameters in (11) for the Nunley et al. (2015) study, with

each row showing the coefficients from a separate regression. While applications with distinctively

black names are significantly less likely to be called back, we find no significant effect on callback

probabilities of changing the racial mix of the other 3 applications to the same job. In fact,

the point estimate indicates that increasing the share of applicants with distinctively black names

insignificantly lowers callback rates, which is the opposite of what one would expect if callbacks were

rival. Across the 12 covariates we consider only one (an indicator for 3+ months of unemployment)

finds a significant peer effect at conventional levels. However, a joint test fails to reject that all of

the leave out mean coefficients are jointly zero.

As another composite test, we report the results of a model in which the peer effects are

restricted to be proportional to the main effects of the application’s own characteristics Xj`. The

row titled “predicted callback rate” pools all the application characteristics into an index Xj`λ̂1(j)

where λ̂1(j) is the leave out OLS coefficient vector obtained from regressing the callback indicator on

application covariates after leaving out all applications to job j. In the Nunley et al. (2015) study, a

unit increase in Xj`λ̂1(j) is associated with roughly half of a callback on average. Note that if we had

used the leave-in OLS prediction Xj`λ̂1 as the regressor, this coefficient would mechanically equal

one. Though Xj`λ̂1(j) strongly predicts callbacks, its average value among competing applications

(L− 1)−1∑
k 6=`Xjkλ̂1(j) has no statistically discernible impact on callbacks.

Columns 3 and 4 of Table II report corresponding estimates for the AGCV data. Unfortunately,

the covariates in this dataset have insignificant direct effects, so tests of indirect effects are funda-

mentally under-powered. Empirically then Assumption 1 seems to provide a good approximation

to callback behavior in the Nunley et al. (2015) experiment. A possible explanation for this result

may be that these researchers applied to posted vacancies where employers were capable of hir-

ing multiple applicants to the same job. Whatever the reason, we now proceed to estimating the

moments of the callback distribution based on Assumption 1.

7 Moment Estimates

Tables III-V report estimates of identified moments of the callback distribution in each of our

three experiments. We report method of moments estimates that apply equation (6) to the sam-
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ple callback frequencies as well as “shape constrained” GMM estimates that require the callback

frequencies be rationalizable by a proper (discretized) probability distribution G ∈ G . Imposing

shape constraints serves two goals. First, we need the moment estimates to be rationalizable by

some G ∈ G in order to subsequently use them as constraints when estimating bounds via our

linear programming method. Second, when the constraints bind, the resulting estimates are typ-

ically closer to the truth and more precise (see Chetverikov et al., 2018 for a review). Details of

the shape constrained estimation procedure appear in Appendix C. Table VI uses the shape con-

strained estimates to summarize key features of the distribution of callback probabilities in each

experiment.

Bertrand and Mullainathan (2004)

Estimates of centered moments in the Bertrand and Mullainathan experiment are shown in Table

III. Because this study employed a single design with Lw = Lb = 2, the moments reported are just

identified. The first column of Table III reports method of moments estimates with standard errors

computed via the delta method. The first row of the Table shows the mean callback probabilities of

white and black applications across jobs which, because of the balanced application design, match

the callback rates reported in Table I. More interesting are the second moments: there is substantial

over-dispersion in callback probabilities, with standard deviations across jobs for each race-specific

probability more than double the mean probability. As expected, there is also a strong positive

covariance between white and black callback rates, reflecting that some employers simply call back

more applications of all types.

As shown in column 2, the shape constraints do not bind in the Bertrand and Mullainathan

data, which means the sample frequencies can be rationalized to numerical precision by a discretized

probability distribution. Consequently, the resulting moment estimates are identical to the method

of moments estimates of column 1. Though the constraints do not bind, it is hypothetically possible

for the variability of the constrained estimator to be lower if some of the constraints are near-

binding. However, our standard error estimates, which rely on the “numerical bootstrap” procedure

of Hong and Li (2017) (described in Appendix C), suggest that the constrained GMM estimator is

roughly as variable as the unconstrained method of moments estimator.

Columns 1-3 of Table VI report transformations of the moments in Table III that are somewhat

easier to interpret. Most notably, we find substantial heterogeneity in the difference in race specific

callback rates pjb − pjw across jobs. The standard deviation of the job-specific causal effect is

more than twice as large as the mean effect. The third row of Table VI shows the correlation

between white and black callback probabilities is very large, at 0.927. However, the correlation

between the discriminatory gap in callback rates pjb − pjw and the white callback probability pjw

is strongly negative, suggesting that discrimination tends to be stronger when firms have higher

chances of calling back more white workers. This reflects, in part, a mechanical boundary effect,

as an employer with very low callback rates has little opportunity to discriminate. Since the white

callback rate in this study is only around 10%, boundary effects are likely to be a quantitatively
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important phenomenon.

Nunley et al. (2015)

Moment estimates from the Nunley et al. (2015) study are reported in Table IV. Recall that Nunley

et al. (2015) employed five distinct application designs with (Ljw, Ljb) ∈ {(4, 0) , (3, 1) , (2, 2) , (1, 3) , (0, 4)}.
Columns 1-3 of Table IV report design-specific method of moments estimates of all identified mo-

ments for the three designs with the largest sample sizes.3 As expected, the design-specific estimates

are generally close to one another. The sole moment that appears to differ across designs is the mean

white callback rate, which is somewhat lower in the (1, 3) design than the (3, 1) design. However,

column 5 of Table IV shows that the differences between the designs are not jointly statistically

significant, which is in line with our findings from the previous section.

To pool the designs efficiently, we again use a shape constrained GMM estimator that requires

the moments be rationalizable by a proper probability distribution G ∈ G . The pooled estimates,

reported in column 5 of Table IV, lie closest to those from the (2, 2) design, which has the largest

sample size. Moments identified solely by the (1, 3) and (3, 1) designs change more substantially

when pooling across designs, as the binomial structure of the probabilities imposes restrictions

across moments. As usual, the minimized value of our GMM criterion function provides a measure

of the goodness of fit of our model. Applying the bootstrap method of Chernozhukov et al. (2015)

yields a p-value of 0.19 for the null hypothesis that the results for all experimental designs are

jointly rationalized by the model. As expected, pooling the designs substantially improves the

precision of the estimated coefficients. Notably, the standard error estimates fall substantially even

for many just-identified moments due to the cross-moment restrictions implied by the model.

Consistent with our findings for the Bertrand and Mullainathan data, columns 4-6 of Table VI

reveal substantial heterogeneity in race-specific callback rates in the Nunley et al. (2015) experi-

ment, with standard deviations roughly twice their mean. The imbalanced design used by Nunley

et al. (2015) allows us to identify higher moments than the earlier Bertrand and Mullainathan

study despite the total number of applications sent being the same. While race-specific callback

rates are right skewed, racial gaps in callback probabilities pjb − pjw are left-skewed, suggesting a

long tail of heavy discriminators.

Arceo-Gomez and Campos-Vasquez (2014)

Column 1 of Table V reports just-identified method of moments estimates for the AGCV data.

Column 2 imposes shape constraints on the moments, which bind strongly in this case, presum-

ably because the design of the AGCV experiment involves many small cells. Despite substantial

movement in the moment estimates, the bootstrap p-value on the null hypothesis that the callback

frequencies are generated by the model is 0.79, indicating that the raw callback frequencies are

rationalizable by a well-behaved underlying joint distribution of callback probabilities. Moreover,

3The remaining designs were omitted from this analysis due to small sample sizes. Only 22 jobs were in the
(Ljw = 0, Ljb = 4) design while 43 jobs fell in the (Ljw = 4, Ljb = 0) design.
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imposing the shape constraints reduces the estimated standard errors of some of these moments. It

is important to note, however, that the asymptotic distribution of the shape constrained estimator

will tend to be non-normal (Fang and Santos, 2018) and so standard errors provide only a heuristic

guide to the uncertainty associated with each moment estimate.

Columns 7-9 of Table VI report key moment estimates from the AGCV data. The behavior of

the first two moments is similar to that reported in the prior two experiments, with gender-specific

standard deviations roughly twice their mean callback probabilities. However, the greater number

of applications used in this design helps enormously with the precision of higher moment estimates.4

We find strong evidence of left-skew in the distribution of gender gaps in callback probabilities as

well as evidence of excess kurtosis in the distribution of gaps. While many jobs discriminate little,

there is a thick tail of heavy discriminators.

8 Posterior Bounds

Our analysis of moments revealed substantial heterogeneity in callback probabilities and discrimi-

nation across employers. Next, we compute lower bound estimates of the probability that a given

employer is discriminating. In computing both the analytic bounds of Lemma 3 and the sharp

bounds of (9), we replace the unknown callback probabilities f̄ with estimates ˆ̄f = Bµ̂, where µ̂ is

the relevant vector of shape constrained moment estimates reported in Tables III-V. To ensure our

bounds are not artificially tight, our linear programming algorithm employs a grid with 36 times

as many points as the grid used in our earlier GMM step.

Bertrand and Mullainathan (2004)

Table VII reports upper bounds on the fraction of jobs that are not engaged in discrimination by

the number of applications called back in the Bertrand and Mullainathan experiment. Column

1 of Table VII reports estimates of the analytic bounds in Lemma 3: at most 62% of the jobs

that call back 2 applications are innocent of discrimination, while at most 56% of jobs that call

back 3 applications are not discriminating. Column 2 of Table VII reports estimates of the sharp

linear programming bounds. The sharp upper bounds are somewhat lower than their analytical

counterparts, revealing that at most 56% of the jobs calling back two applicants are not discrimi-

nating. Among jobs that call back three applications, at most half are not discriminating on the

basis of race. In this callback stratum, our estimates suggest jobs should not logically be presumed

innocent.

The linear programming approach also generates informative bounds in callback strata for which

analytical bounds are not available. Overall, at most 87% of jobs do not discriminate on the basis of

race. Notably, at most 96% of jobs that call back no applications are not engaged in discrimination,

4Though the standard errors reported in Table VI suggest imprecision in our estimates of the higher moments
of the female callback rate distribution, this appears to be a consequence of the asymptotic non-normality of the
shape-constrained estimator. For example, the numerical bootstrap gives a 90-percent confidence interval of [5.37,
7.49] for the excess kurtosis of pjf while the corresponding standard error equals 8.79.
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while at most 79% of jobs that call back all four applications do not discriminate on the basis of

race. Since neither of these strata exhibit any difference in black-white callback rates, all of the

relevant information on discrimination in these strata comes from the total number of callbacks

blended with the indirect evidence from the callback distribution G (·, ·).
Column 3 of Table VII reports linear programming-based upper bounds on the proportion of jobs

with white callback probabilities greater than or equal to their black callback probability, Pr(pwj ≥
pbj). We find an upper bound of exactly one in each callback stratum, indicating that the callback

probabilities can be rationalized without any employers engaging in “reverse discrimination” against

whites. Column 4 of Table VII reports upper bounds on the proportion of jobs with white callback

probabilities less than or equal to their black callback probabilities, Pr(pwj ≤ pbj). These upper

bound estimates coincide exactly with those reported in column 2. Accordingly, we easily reject

the null hypothesis of no discrimination against blacks.

Figure I converts the upper bound estimates in column 2 of Table VII to lower bound posterior

probabilities of discrimination. Overall, at least 13% of jobs engage in discrimination. However, at

least 72% of jobs that call back two white and no black applications are discriminating, while a job

that calls back one white and no black applications has at least a 58% chance of discriminating.

Highlighting the role of indirect evidence, we estimate that at least 4% of jobs that call back no

applicants and at least 21% of jobs that call back all applicants discriminate on the basis of race.

Nunley et al. (2015)

Table VIII reports upper bound estimates of the probability of innocence from the Nunley et al.

(2015) study for each application design involving both races. In column 1, our analytic bound

formula suggests at most 72% of the jobs calling back two applicants in a balanced design with

Ljw = Ljb = 2 are not discriminating – slightly higher than the corresponding estimate in Bertrand

and Mullainathan. This upper bound is higher in the two imbalanced designs (Ljw = 3, Ljb = 1)

and (Ljw = 1, Ljb = 3).

Applying the linear programming approach tightens these bounds dramatically and provides

additional bounds on the prevalence of discrimination among jobs that make no callbacks or that

call every application. We estimate that at most 64% of all jobs have equal white and black

callback probabilities, with that share falling to under 31% among employers who call back two

applicants in a balanced (2, 2) design. However, some of this discrimination is estimated to be

against whites. Column 3 shows that our shape constrained callback probabilities ˆ̄f imply that at

most 85% of employers have white callback probabilities greater than or equal to black probabilities.

However, these moments are estimated with error, and a bootstrap test of the null hypothesis that

all employers have white callback probabilities weakly exceeding their black callback probability

yields a p-value of 0.12. If we attribute the evidence of reverse discrimination to sampling error,

we can take the estimates in column 3 as the relevant upper bounds on non-discrimination, which

are closer to the analytical bounds reported in column 1. Column 4 of Table VIII reports that

at most 83% of jobs have white callback probabilities less than or equal to black probabilities.
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Unsurprisingly, we decisively reject the null hypothesis that this upper bound is one, indicating

that discrimination against blacks is substantial.

Figure II converts the upper bound priors reported in column 3 of Table VIII into posterior

estimates of the share of employers with selected callback configurations engaged in discrimination

against blacks. Overall, at least 15% of jobs discriminate against blacks (i.e., have pjw > pjb).

However, we estimate that at least 85% of the employers calling back two white and no black

applicants in a balanced (2, 2) design are discriminating against blacks. Interestingly, calling back

three whites and no blacks in a (3, 1) design is estimated to be even more suspicious, with at least

90% of the employers generating this callback evidence engaged in discrimination against blacks.

Arceo-Gomez and Campos-Vasquez (2014)

Table IX reports upper bound estimates of the probability of innocence in the AGCV experiment.

Focusing on the sharp bounds reported in column 2, we find that at most 72% of jobs are not

engaged in discrimination against either gender. Remarkably, this share falls to 11% among jobs

calling back a single applicant and rises to only 28% among jobs calling back two applicants. This

bound is much lower than the analytic bound in column 1, showing that cross-stratum restrictions

in a design with eight applications are very useful for tightening bounds in strata with few callbacks.

Evidently, jobs that call back few applicants in the AGCV experiment are very likely to engage in

discrimination.

Some of this discrimination appears to be “reverse” discrimination against women. Column 3

shows that at most 91% of jobs do not discriminate against women and a bootstrap test of the null

hypothesis that this bound equals one is decisively rejected. An employer that calls back a single

application has at most a 59% chance of not discriminating against women. Column 4 shows that at

most 81% of jobs do not discriminate against men, and our bootstrap p-value indicates this bound

is also statistically distinguishable from one. The mean difference in callback rates in the ACGV

experiment therefore masks gender discrimination operating in both directions. An employer that

calls back a single application has at most a 52% chance of not discriminating against men.

Figure III plots lower bound posterior probabilities of discrimination against men and women,

respectively, for selected callback configurations. Unconditionally, at least 20% of jobs discriminate

against men (i.e., have pjm < pjf ), while at least 10% of jobs discriminate against women (i.e.,

have pjf < pjm). At least 97% of the jobs that call back four women and no men are estimated

to discriminate against men. But even an employer that calls back a single woman and no men

has at least a 90% chance of discriminating against men. Likewise, at least 85% of jobs that call

back a single man and no women are estimated to be discriminating against women. Note that

the under null of non-discrimination, the probability of a particular gender being contacted given

a single callback in total is f̄0
1 (1, 0) = f̄0

1 (0, 1) = 1/2. That we obtain such strikingly informative

posteriors in settings with a single callback demonstrates the tremendous value of indirect evidence

in this setting.
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9 Parametric Models

The previous section demonstrated that standard audit experiments allow robust non-parametric

inferences to be drawn about the discriminatory status of particular jobs. In this section, we

contrast the non-parametric bounding methods developed above with the results of considering a

simple parametric family Gθ of distributions for G (·, ·). We estimate the parameter vector θ by

maximum likelihood. If the true G (·, ·) lies in Gθ then this approach will yield consistent and

efficient estimates of θ, while if the model is misspecified, maximum likelihood will still provide an

approximation to whatever features of G (·, ·) are identified. Parametric modeling also facilitates

incorporating other application characteristics into the callback probabilities. This can serve to

generate more nuanced posteriors; for example, an employer that calls back both of two low quality

white applications but neither of two high quality black applications is particularly suspicious.

We work with a mixed logit model of the form

Pr (Yj` = 1|Rj`, Xj`, αj , βj) = Λ
(
αj − βj1 {Rj` = b}+X ′j`ψ

)
,

where Λ (·) = exp(·)
1+exp(·) is the standard logistic CDF, Xj` is a vector of de-meaned application covari-

ates, and (αj , βj) are random coefficients governing the odds of a white callback and discrimination

against blacks respectively. To allow for heterogeneity in white callback rates we assume that

αj
iid∼ N

(
α0, σ

2
α

)
. Discrimination is modeled as a two-type (conditional) mixture:

βj |αj =

β0 w/ prob. Λ (τ0 + τααj),

0 w/ prob. 1− Λ (τ0 + τααj).

The above specification allows for some fraction of jobs to not discriminate at all, while the

remaining jobs depress the odds of calling back blacks relative to whites by roughly β0%. When

τα 6= 0, the probability of a job discriminating depends on αj , which governs the white callback

rate. Note that random assignment of the covariates Xj` implies they can safely be excluded from

the type probability equation.

Model Estimates

Table X shows the results of fitting the above model to the Nunley et al. (2015) experiment. Column

1 provides a standard “random effects” logit model with heterogeneity confined to the intercept as

in Farber et al. (2016). We find substantial variability across jobs in the overall odds of a callback:

a 0.1 standard deviation increase in the intercept αj is estimated to raise the odds of a callback by

47%. We also find clear evidence of market-wide discrimination: black applications have roughly

46% lower odds of being called back than their white counterparts.

Column 2 allows the race effect βj to vary across employers, which yields a significant improve-

ment in model fit. The types specification finds that only about 17% of jobs discriminate against

blacks – very near the lower bound estimate of 15% produced by our linear programming routine
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(see column 3 of Table VIII). However, the degree of discrimination among such jobs is estimated

to be very severe – the odds of receiving a call back are roughly exp (4)− 1 ≈ 53 times higher for

white applications than blacks. Column 3 allows the probability of being the discriminatory type to

depend on the white callback rate, which yields a negligible improvement in model fit. Surprisingly,

αj and βj are found to be nearly independent, which implies that the negative correlation between

pjb− pjw and pjw reported in Table VI is attributable to boundary effects. Again, this model finds

roughly 17% of jobs discriminate against blacks.

Because we cannot reject the null hypothesis that τα = 0 (i.e. that discrimination is independent

of white callback rates), we work with the more parsimonious model in column 2 in the exercises

that follow. Figure IV provides a goodness of fit diagnostic for this model, plotting the empirical

callback rates in each black / white callback by application design cell against the logit model’s

predicted callback probability in that cell. The empirical frequencies track the model predictions

closely and a naive Pearson χ2 test fails to reject the null hypothesis that the model rationalizes

the cell frequencies up to sampling error.

Posteriors

Figure V reports the distribution of posterior probabilities Pr(Dj = 1|{Yj`, Rj`, X ′j`ψ}L`=1) implied

by the parameter estimates reported in column 2 of Table X. To summarize the influence of the

covariates, we evaluate the posteriors at two points within each race group, corresponding to the

estimated index X ′j`ψ̂ being a standard deviation above or below its empirical mean, which we

refer to as “high” and “low” quality applications respectively. By construction, the mean posterior

coincides with the fraction of jobs that are estimated to be discriminating. The types model finds

that only 17% of jobs are discriminating, yielding a strong prior of innocence. Calling back only

white applicants still justifies a substantial degree of suspicion, however: 62% of the jobs that call

back two whites and no blacks are discriminating. Imbalances in the covariate mix of applicants

can substantially intensify this suspicion. Specifically, 79% of the jobs that call back two low

quality white applications and neither of two high quality black applications are discriminating.

Evidently, even in models with a strong presumption of innocence, four applications can provide

enough information to cast substantial doubt on whether individual employers are in compliance

with US employment law. However, it is only under the most extreme callback configurations that

we can detect discriminators with reasonable certainty. In the next section, we study more carefully

the tradeoff between type I and II errors presented by the two-type model, and how that tradeoff

evolves with the number of applications sent.

10 Experimental Design and Detection Error Tradeoffs

We now study the ability of a hypothetical auditor to detect employer discrimination in a hypo-

thetical population characterized by the two-type logit model of callback rates reported in column

2 of Table X. This parameterization found that discrimination was very rare, with only 17% of jobs
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engaging in discrimination. It is of considerable interest then to understand how the tradeoff be-

tween type I (“false accusation”) and type II (“false acquittal”) errors faced by an auditor changes

with the number of applications sent to each job.

Recall from Lemma 1 that an auditor’s optimal decision rule is to investigate when the posterior

probability of discrimination crosses a cost-based threshold. We presume the auditor forms poste-

riors using her prior knowledge of G (·, ·) which coincides with the two-type estimates reported in

Table X. This corresponds to a thought experiment in which the auditor fits the two-type model

to the Nunley et al. (2015) experiment, forms consistent estimates of the logit parameters, and

then sends applications to additional vacancies posted on the same online job board from which

the original study sampled.

Figure VI displays a rescaling of the type I and II error rates that arise from implementing

decision rules corresponding to varying posterior thresholds. The horizontal axis of Figure I gives

the share of jobs engaged in discriminating that are investigated (“accused”). The vertical axis

plots the share of non-discriminators that are not investigated (i.e., that are “acquitted”). Note

that this quantity corresponds to 1 − (FDR1/π
0) (see Remark 2). Each point gives the values of

these shares corresponding to a particular posterior decision threshold. The bold point corresponds

to a posterior threshold of 80%.

In the canonical design with only 4 applications (2 white and 2 black), the 80% posterior

threshold yields almost no false accusations. This control over type I errors comes at the cost of

a very high type II error rate – very few accusations of any sort are made, leading to a negligible

fraction of discriminators being detected. Note that conducting a classical hypothesis test (e.g.,

Fisher’s exact test) at the 1% level is equivalent to controlling the fraction of correct acquittals,

which is depicted by the horizontal line at 0.99. This rule would yield more accusations but most

of those accusations would be erroneous – the equivalent posterior threshold in the 2 pair design is

only about 33%.

Expanding the design to 5 pairs of applications (5 white and 5 black) yields a very substantial

outward shift in the detection error tradeoff curve. Using a posterior threshold of 80% keeps

the fraction of employers falsely accused of discrimination below 0.2% while allowing detection of

roughly 7.5% of the jobs that are actually discriminating. Evidently, ten applications is enough to

accurately detect a non-trivial fraction of discriminators.

The third line probes the potential for further gains by choosing the racial mix and covariates of

the applications optimally. Specifically, we consider the set of 10-application portfolios generated by

all possible combinations of race and two covariate-based application “quality” bins, and select the

portfolio that minimizes risk for a given posterior threshold. We then vary that threshold to trace

out the detection error tradeoff. Choosing applications optimally yields modest improvements

in type I and II error rates. Using an 80% posterior threshold, the share of non-discriminators

investigated remains below 0.2%, while the share of discriminators investigated rises to roughly

10%.

Interestingly, the risk minimizing portfolio for an auditor with an 80% posterior threshold
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consists of 5 high quality black applications and 5 low quality white applications. Intuitively,

an employer that calls back low quality white applications more often than high quality black

applications is very likely to be discriminating against blacks. Of course, the results of such an

experiment would be difficult to interpret without prior knowledge of G (·, ·), as one would not be

able to parse the separate effects of race and quality. Consequently, the gains from optimizing the

portfolio of applications are in practice only achievable in a sequential experiment in which a first

wave is used to estimate G (·, ·).

11 Ambiguity and Auditing Thresholds

The analysis of the previous section suggested that a favorable mix of type I and type II errors

can be achieved when 10 applications are sent to each job and jobs with a posterior probability

of discriminating greater than 80% are investigated. However, that analysis assumed that G (·, ·)
was characterized by the parameters of our two-type logit model, which provides only one of many

possible rationalizations of the moments identified by the Nunley et al. (2015) experiment. To

assess how our hypothetical auditor’s risk might change under different distributional assumptions,

and how best to respond to this ambiguity, we now study the maximum risk function RmJ (δ). In

this exercise, we assume each job j is characterized by a tuple
(
pHjw, p

L
jw, p

H
jb, p

L
jb

)
of race by quality

callback probabilities drawn from the joint distribution G
(
pHw , p

L
w, p

H
b , p

L
b

)
. For comparison with the

logit model, which only allowed discrimination against blacks, we define discrimination as occuring

when callback probabilities are higher for whites within either quality stratum; that is, we define

Dj = 1− 1{pHjb ≥ pHjw}1{pLjb ≥ pLjw}.5

To facilitate comparison with the logit model, we consider a restricted family D† of decision

rules of the form δ (Cj , q) = 1 {P (Cj , X
′ψ,Glogit) ≥ q} , where q ∈ (0, 1) is a cutoff and Glogit is

the logit model reported in column 2 of Table X.6 Computing the maximal risk for this family

of decision rules can be thought of as a way of “second guessing” the risk associated with each

logit posterior threshold without debating the logit model’s ordering of the underlying evidence

configurations. In computing RmJ (δ), we use the logit predictions of f̄ (cw, cb) within each of the

two quality bins of X ′ψ̂ as constraints (see Appendix D for details) and choose loss parameters

κ = 4 and γ = 1 so that, under the logit DGP, an 80% posterior threshold would minimize risk.

Figure VII plots average risk RmJ (δ (·, q)) /J against the nominal logit posterior threshold q.

For each decision rule, the maximal risk is much higher than the average logit risk, with the ratio

between the two risks growing (discontinuously in some cases) with the posterior cutoff. As the

posterior threshold approaches one – so that no jobs are accused – the maximal risk approaches

one because the least favorable G (·, ·) entails every job being guilty. Conversely as the posterior

threshold approaches zero – so that all jobs are accused – the maximum risk approaches four

5Defining discrimination more narrowly as any difference between white and black callback probabilities within
either quality stratum yields nearly identical results.

6In cases where multiple evidence configurations yield posterior q, we consider separate rules that investigate each
of these configurations individually.
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because the least favorable G (·, ·) is one where nearly all jobs are innocent. Recall however from

Table VIII that not all jobs can be innocent in the Nunley et al. (2015) experiment, which is why

supδ∈D† RmJ (δ) /J is a value less than four.

While the logit risk function RJ (Glogit, δ) is minimized by the decision rule with a threshold

nearest 80%, RmJ (δ) is minimized by a rule with an implicit (logit-based) threshold of only 18%.

This lower threshold implies a minimax auditor would investigate many more jobs than an auditor

with the same preferences who knows G (·, ·) to be logit. Evidently, the minimax auditor is more

concerned with the possibility that she is passing over a vast number of jobs engaged in modest

amounts of discrimination than that a few non-discriminators are improperly investigated. To gain

some intuition for this result, note that the minimax decision rule occurs at a threshold where the

fraction of jobs that are engaged in discrimination more than triples. If the worst case DGP is one

where most jobs are guilty, it makes sense to accuse more jobs. The lesson here is that although

mispecification can lead to substantially higher risk, ambiguity regarding G (·, ·) will tend to lead

to more rather than fewer audits.

12 Conclusion

Correspondence studies are powerful tools that have been extensively used to detect market level

averages of discriminatory behavior. Revisiting three such studies, we find tremendous hetero-

geneity across employers in their degree of discriminatory behavior. This heterogeneity presents

authorities charged with enforcing anti-discrimination laws with a difficult inferential task. Our

analysis suggests that when ensemble evidence is used, 10 applications per employer is enough to

accurately detect a non-trivial share of discriminatory employers. This finding opens the possibility

that discrimination can be monitored – perhaps in real time – at the employer level.

Our results also provide a number of methodological lessons regarding the design and analysis of

correspondence studies, and of experimental ensembles more generally. First, we demonstrate that

indirect evidence can serve as a valuable supplement to direct evidence when making inferences

regarding the behavioral responses of particular experimental units. Our logit results, in partic-

ular, suggest that accurately monitoring illegal discrimination in online labor markets is feasible

with relatively small modifications to conventional audit designs once knowledge of the callback

distribution G (·, ·) has been obtained. Whether such knowledge is better obtained through se-

quential experimentation (e.g., Chakraborty and Murphy, 2014; Dimakopoulou et al., 2017; Narita

et al., 2018) or static empirical Bayes methods of the sort considered in this paper is an interesting

question for future work.

Second, our analysis demonstrates that partial identification of the population distribution of

response heterogeneity does not preclude “borrowing strength” from experimental ensembles. Using

only a few moments of the callback distribution, we are able to derive informative lower bounds

on the fraction of jobs engaging in illegal discrimination. These bounds are shown to allow precise

inferences to be drawn about some jobs even in standard designs with only four applications per
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job. In the Arceo-Gomez and Campos-Vasquez (2014) study, which sent eight applications to each

job, we are able to deduce informative lower bound rates of discrimination against men and women

separately.

Third, our results highlight that the appropriate use of indirect evidence depends critically on

the objectives of the investigator, formalized in our framework by the loss function of a hypothetical

auditor. While in point identified settings it is straightforward to characterize the tradeoff between

type I and II errors implied by different decision rules, partial identification of heterogeneity dis-

tributions tends to undermine identifiability of this tradeoff itself, an issue emphasized by Manski

(2000). In our setting acknowledging the ambiguity stemming from partial identification turns

out to lead to “bolder” inferences, but it is easy to envision settings where the opposite would

be true. An interesting topic for future research is the extent to which the policy implications

of recent econometric evaluations of teachers, schools, hospitals, and neighborhoods (e.g., Chetty

et al., 2014b; Angrist et al., 2017; Hull, 2018; Chetty and Hendren, 2018; Chetty et al., 2018) vary

with alternative notions of risk.
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Appendix A: Proof That pFDRJ = Pr (Dj = 0|δ(Cj) = 1)

By iterated expectations

E

N−1
J

J∑
j=1

δ (Cj) (1−Dj) |NJ ≥ 1

 =
J∑
n=1

n−1E

 J∑
j=1

δ (Cj) (1−Dj) |NJ = n

Pr (NJ = n|NJ ≥ 1)

=
J∑
n=1

n−1JE [δ (Cj) (1−Dj) |NJ = n] Pr (NJ = n|NJ ≥ 1)

=
J∑
n=1

n−1J Pr (Dj = 0|δ(Cj) = 1, NJ = n) Pr (NJ = n|NJ ≥ 1)

×Pr (δ(Cj) = 1|NJ = n)

=

J∑
n=1

Pr (Dj = 0|δ(Cj) = 1, NJ = n) Pr (NJ = n|NJ ≥ 1)

= Pr (Dj = 0|δ(Cj) = 1)
J∑
n=1

Pr (NJ = n|NJ ≥ 1)

= Pr (Dj = 0|δ(Cj) = 1) ,

where the second and fifth lines use that the {Cj , Dj}Jj=1 are iid and the fourth uses the fact that

Pr (δ (Cj) = 1|NJ = n) = n/J . Hence, pFDRJ gives the probability Pr (Dj = 0|δ(Cj) = 1) that an

investigated job is innocent.

Appendix B: Discretization of G and Linear Programming Bounds

To compute the solution to the problem in (9), we approximate the CDF G (pw, pb) with the discrete

distribution

GK (pw, pb) =
K∑
k=1

K∑
l=1

πkl1 {pw ≤ % (k, l) , pb ≤ % (l, k)} ,

where the {πkl}K,Kk=1,l=1 are probability masses and {% (k, l) , % (l, k)}K,Kk=1,l=1 comprise a set of mass

point coordinates generated by the function

% (x, y) =
min {x, y} − 1

K︸ ︷︷ ︸
diagonal

+
max {0, x− y}2

K (1 +K − y)︸ ︷︷ ︸
off-diagonal

.

This discretization scheme can be visualized as a two-dimensional grid containing K2 elements.

The diagonal entries on the grid represent jobs where no discrimination is present. The first term

above ensures the mass points are equally spaced along the diagonal from (0, 0) to
(
K−1
K , K−1

K

)
. The

second term spaces off diagonal points quadratically according to their distance from the diagonal
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in order to accomodate jobs with very low levels of discrimination while economizing on the number

of grid points. Note that lim
K→∞

% (K, y) = 1 ensuring the grid asymptotically spans the unit square.

With this notation, the constraints in (10) can be written:

f̄ (cw, cb) =

(
Lw

cw

)(
Lb

cb

)
K∑
k=1

K∑
l=1

πkl% (k, l)cw (1− % (k, l))Lw−cw % (l, k)cb (1− % (l, k))Lb−cb ,

(12)

for cw = (1, ..., Lw) and cb = (1, ..., Lb). Hence, our composite discretized optimization problem is

to

max
{πkl}

(
L

t

)
∑

(c′w,c′b):c′w+c′b=t
f̄
(
c′w, c

′
b

) K∑
l=0

K∑
k=0

πkl% (k, l)t (1− % (k, l))L−t ,

subject to (12) and
K∑
k=1

K∑
l=1

πkl = 1, πkl ≥ 0,

for k = 1, ...,K and l = 1, ...,K. We solve this problem numerically using the Gurobi software

package. Because setting K too low will tend to yield artificially tight bounds, we set K = 900 in

all bound computation steps, which yields (900)2 = 810, 000 distinct mass points.

Appendix C: Shape Constrained GMM

To accomodate the Nunley et al. (2015) study which employs multiple application designs, we in-

troduce the variable Aj = (Ajw, Ajb) which gives the number of white and black applications sent

to job j. Collecting the design-specific callback probabilities {Pr (Cjw = cw, Cjb = cb|Aj = a)}cw,cb
into the vector fa, our model relates these probabilities to moments of the callback distribution

via the linear system fa = Baµ, for Ba a fixed matrix of binomial coefficients. Letting f denote

the vector formed by “stacking” the {fa} across designs in an experiment, we write f = Bµ.

Let π be a K2 × 1 vector comprised of the probability masses {πkl}K,Kk=1,l=1 (see Appendix B).

For GMM estimation we set K = 150 (larger values yield very similar results). From (12), we

can write µ = Mπ where M is a dim (µ) × K2 matrix comprised of entries with typical element

% (k, l)m (1− % (k, l))s−m % (l, k)n (1− % (l, k))t−n. Defining R = BM , we have the moment restric-

tion f = Rπ.

Let f̃ denote the vector of empirical call back probabilities with typical element:

J−1
∑J
j=1 1{Cjw=cw,Cjb=cb,Aj=a}
J−1

∑J
j=1 1{Aj=a}

.

Our shape constrained GMM estimator of π can be written as the solution to the following

quadratic programming problem:

π̂ = arg inf
π

(f̃ −Rπ)′W (f̃ −Rπ) (13)
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s.t. π ≥ 0, 1′π = 1,

where W is a fixed weighting matrix. Note that because G (·, ·) is not identified, there are many

possible solutions π̂ to this problem, but these solutions will all yield the same values of Rπ̂. Our

shape constrained estimate of the moments is µ̂ = Mπ̂ while our estimator of the callback

probabilities is f̂ = Rπ̂. We follow a two-step procedure, solving (13) with diagonal weights

proportional to the number of jobs used in the application design and then choosing W = Σ̂−1

where Σ̂ = diag
(
f̂ (1)

)
− f̂ (1)f̂ (1)′ is an estimate of the variance-covariance matrix of the callback

frequencies implied by the first step shape-constrained callback probability estimates f̂ (1).

Hong and Li (2017) standard errors

Standard errors on the moment estimates µ̂ are computed via the numerical bootstrap procedure

of Hong and Li (2017) using a step size of J−1/4 (we found qualitatively similar results with a step

size of J−1/3). Our implementation of the numerical bootstrap proceeds as follows: the bootstrap

analogue µ∗ of µ̂ solves the quadratic programming problem in (13) where f̃ has been replaced by(
f̃ + J−1/4f∗

)
. The bootstrap probabilities f∗ have typical element:

J−1
∑J
j=1 ω

∗
j 1{Cjw=cw,Cjb=cb,Aj=a}

J−1
∑J
j=1 ω

∗
j 1{Aj=a}

,

where
{
ω∗j

}J
j=1

are a set of iid draws from an exponential distribution with mean and variance one.

For any function φ (µ̂) of the moment estimates µ̂ reported, we use as our standard error estimate

the standard deviation across bootstrap replications of J−1/4 [φ (µ∗)− φ (µ̂)].

Chernozhukov et al. (2015) goodness of fit test

To formally test whether there exists a π in the K2 dimensional probability simplex such that

f = Rπ holds, we rely on the procedure of Chernozhukov et al. (2015). Our test statistic (the

“J -test”) can be written:

Tn = inf
π

(f̃ −Rπ)′Σ̂−1(f̃ −Rπ)

s.t. π ≥ 0, 1′π = 1.

Letting F∗ = f∗− f̃ denote the (centered) bootstrap analogue of the callback frequencies f̃ and

W ∗ a corresponding bootstrap weighting matrix, our bootstrap test statistic takes the form:

T ∗n = inf
π,h

(F∗ −Rh)′W ∗(F∗ −Rh) (14)

s.t. (f̃ −Rπ)′W (f̃ −Rπ) = Tn, π ≥ 0, 1′π = 1, h ≥ −π, 1′h = 0

As in the full sample problem, we conduct a two-step GMM procedure in each bootstrap replication,
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setting W ∗ =
[
diag(Rπ(1)∗)− (Rπ(1)∗)(Rπ(1)∗)′

]−1
where π(1)∗ is a first-step diagonally weighted

estimate of the probabilities in the bootstrap sample. The goodness of fit p-value reported is the

fraction of bootstrap samples for which T ∗n > Tn.

To simplify computation of (14), we re-formulate the problem in two ways. First, we define

primary and auxilliary vectors of errors for each moment condition. Letting ξh = F∗ − Rh and

ξπ = f̃ −Rπ, the problem can be re-posed as:

T ∗n = inf
ξh,ξπ

ξ′hW
∗ξh,

s.t. ξ′πWξπ = Tn, Rh+ ξh = F∗, Rπ + ξπ = f̃ , 1′h = 0, 1′π = 1, h ≥ −π, π ≥ 0.

Now letting h+ = h+ π, we can further rewrite the problem as:

T ∗n = inf
ξh,ξπ

ξ′hW
∗ξh,

s.t. ξ′πWξπ = Tn, Rh+ + ξh + ξπ = F∗, Rπ + ξπ = f̃ , 1′h+ = 1, 1′π = 1, h+ ≥ 0, π ≥ 0.

Note that this final representation replaces a K2 ×K2 + 1 (inequality) constraint matrix encoding

ξh ≥ −ξπ and ξπ ≥ 0 with a 2K2× 1 vector encoding h+ ≥ 0 and π ≥ 0. Because this problem still

involves a quadratic constraint in ξπ, we make use of Gurobi’s Second Order Cone Programming

(SOCP) solver to obtain a solution.

Appendix D: Computing Maximum Risk

We approximate G
(
pHw , p

L
w, p

H
b , p

L
b

)
with the discretized distribution

GK
(
pHw , p

L
w, p

H
b , p

L
b

)
=

K∑
k=1

K∑
l=1

K∑
k′=1

K∑
l′=1

πklk′l′1
{
pHw ≤ % (k, l) , pLw ≤ %

(
k′, l′

)
, pHb ≤ % (l, k) , pLb ≤ %

(
l′, k′

)}
,

which has K4 mass points. In practice, we choose K = 30, which yields the same number of points

as the approximation described in Appendix B.

Generalizing the notation of Appendix C, let the vector Aj =
(
AHjw, A

L
jw, A

H
jb, A

L
jb

)
record

the number of high quality and low quality applications of each race sent to job j and let Cj =(
CHjw, C

L
jw, C

H
jb , C

L
jb

)
record the corresponding numbers of callbacks. The posterior probability of

discrimination is Pr (Dj = 1|Aj , Cj) = P (Cj , Aj , G). The space of auditing rules we consider is of

the form δ (Cj , Aj , q) = 1 {P (Cj , Aj , Glogit) > q}.With this notation, we can write the risk function

RJ(q) =

J∑
j=1

Pr (δ (Cj , Aj , q) = 1, Dj = 0)κ+ Pr (δ (Cj , Aj , q) = 0, Dj = 1) γ

= J ×
∑
a∈A1

wa {Pr (δ (Cj , a, q) = 1, Dj = 0)κ+ Pr (δ (Cj , a, q) = 0, Dj = 1) γ} .
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where A1 is the set of all 25 = 36 binary quality permutations possible in a design with 5 white and

5 black applications and wa =

(
5

aHw

)(
5

aHb

)(
1
2

)10
is the set of weights that arise when quality

is assigned at random within race.

To further evaluate the above risk expression note that whenDj = 1−1
{
pHjb ≥ pHjw

}
1
{
pLjb ≥ pLjw

}
,

we can write:

Pr (δ (Cj , a, q) = 1, Dj = 0) =

aHjw∑
cHw=0

aHjb∑
cHb =0

aLjw∑
cLw=0

aLjb∑
cLb =0

δ (c, a, q)

×
K∑
k=1

K∑
l=1

K∑
k′≥k

K∑
l′≥l

πklk′l′ ×

(
aHw

cHw

)(
aHb
cHb

)(
aLw

cLw

)(
aLb
cLb

)
× % (k, l)c

H
w (1− % (k, l))a

H
w−cHw % (l, k)c

H
b (1− % (l, k))a

H
b −c

H
b

× %
(
k′, l′

)cLw (1− % (k′, l′))aLw−cLw % (l′, k′)cLb (1− % (l′, k′))aLb −cLb .

Pr (δ (Cj , a, q) = 0, Dj = 1) =

aHjw∑
cHw=0

aHjb∑
cHb =0

aLjw∑
cLw=0

aLjb∑
cLb =0

(1− δ (c, a, q))

×
K∑
k=1

K∑
l=1

K∑
k′<k

K∑
l′<l

πklk′l′ ×

(
aHw

cHw

)(
aHb
cHb

)(
aLw

cLw

)(
aLb
cLb

)
× % (k, l)c

H
w (1− % (k, l))a

H
w−cHw % (l, k)c

H
b (1− % (l, k))a

H
b −c

H
b

× %
(
k′, l′

)cLw (1− % (k′, l′))aLw−cLw % (l′, k′)cLb (1− % (l′, k′))aLb −cLb .
Using these expressions, maximal risk can therefore be written as the solution to the following

linear programming problem taking the form:

RmJ (q) = J × max
{πklk′l′}

∑
a∈A1

wa {Pr (δ (Cj , a, q) = 1, Dj = 0)κ+ Pr (δ (Cj , a, q) = 0, Dj = 1) γ}

subject to the constraint that the πklk′l′ are non-negative and sum to one and that the following

moment restrictions hold:

Pr (Cj = c|Aj = a) =

(
aHw

cHw

)(
aHb
cHb

)(
aLw

cLw

)(
aLb
cLb

)
K∑
k=1

K∑
l=1

K∑
k′=1

K∑
l′=1

πklk′l′

× % (k, l)c
H
w (1− % (k, l))a

H
w−cHw % (l, k)c

H
b (1− % (l, k))a

H
b −c

H
b

× %
(
k′, l′

)cLw (1− % (k′, l′))aLw−cLw % (l′, k′)cLb (1− % (l′, k′))aLb −cLb .
Specifically, we impose these restrictions for the following set of designs, all of which are present in

the Nunley et al. (2015) experiment:
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A2 = {(2, 0, 2, 0) , (2, 0, 0, 2) , (0, 2, 2, 0) , (0, 2, 0, 2)} .

To operationalize these constraints, we replace the unknown cell probabilities Pr (Cj = c|Aj = a)

for all c and a in A2 with their predictions under the logit model reported in column 2 of Table

X. Using the logit predictions serves as a form of smoothing that allows us to avoid problems that

arise with small cells when considering quality variation due to covariates.

38



Figure I: Lower bounds on posterior probabilities of discrimination, BM data

Notes: This figure displays lower bounds on the probability that jobs in the Bertrand and Mullainathan (2004) 
data discriminate based upon race given their callback configurations. Each bar reports a lower bound on the 
posterior probability of discrimination conditional on (Cw ,C b ), where Cw  is the number of white callbacks 
and C b  is the number of black callbacks.



Figure II: Lower bounds on posterior probabilities of discrimination, Nunley et al. data

Notes: This figure displays lower bounds on the probability that jobs in the Nunley et al. (2015) data 
discriminate against black workers for the 10 callback configurations with highest posterior bounds. Each bar 
reports a lower bound on the posterior probability that p w  > p b  conditional on (C w ,C b ), where C w  is the 
number of white callbacks and C b  is the number of black callbacks. Orange bars correspond to an 
experimental design with 3 white and 1 black application, green bars correspond to a design with 2 white and 
2 black applications, and red bars correspond to a design with 1 white and 3 black applications. The blue bar 
reports the lower bound on the prior probability of discrimination.



Figure III: Lower bounds on posterior probabilities of discrimination, AGCV data

Notes: This figure displays lower bounds on the probability that jobs in the Arceo-Gomez and Campos-
Vasquez (2014) data discriminate based upon sex for the 10 callback configurations with highest posterior 
bounds. Each bar reports a lower bound on the posterior probability of discrimination conditional on (C f ,C m ), 
where C f  is the number of female callbacks and Cm  is the number of male callbacks. Blue bars report lower 
bounds on the probability of discriminating against men, and red bars report lower bounds on the probability 
of discriminating against women. 



Figure IV: Mixed logit model fit

Notes: This figure compares mixed logit predicted frequencies for callback events in the Nunley et al. (2015) 
data with corresponding empirical frequencies. The horizontal axis plots model-predicted probabilities for 
each possible combination of white and black callback counts (excluding zero total callbacks), separately by 
experimental design. Model predictions are calculated by simulating the logit model in column (2) of Table X 
10,000 times for each job in the Nunley et al. data set. The vertical axis plots the observed frequency of each 
event. Green dots show frequencies for a design with two white and two black applications, while orange, 
blue, red, and grey points show frequencies for designs with 3 white and 1 black, 1 white and three black, 4 
white and zero black, and 0 white and 4 black applications, respectively. The dashed line is the 45-degree line. 
The chi-squared statistic and p -value come from a test that all model-predicted and empirical frequencies 
match, treating the model predictions as fixed.



Figure V: Mixed logit estimates of posterior discrimination probabilities, Nunley et al. data

Notes: This figure displays mixed logit estimates of the posterior probability that jobs in the Nunley et al. 
(2015) data discriminate against black workers conditional on (Cw ,C b ), where Cw  is the number of white 
callbacks and C b  is the number of black callbacks. Blue bars show posteriors for a design sending two low 
quality (LQ) white applications and two high quality (HQ) black applications, where low and high quality are 
defined based on a logit covariate index 1 standard deviation below or above the mean. Red bars show 
posteriors for a design sending two HQ white and two HQ black applications. Green bars show posteriors for a 
design sending two LQ white and two LQ black applications. Orange bars show posteriors for a design sending 
two HQ white and two LQ black applications.



Notes: This figure displays detection/error tradeoff curves based on models fit to the Nunley et al. (2015) data. 
Estimates come from decision rules applied to experiments generated from the logit model in column (2) of Table 
X. The horizontal axis measures the share of discriminating jobs accused by each decision rule, while the vertical 
axis measures the share of non-discriminating jobs not accused (acquitted). The curves are generated by varying the 
posterior threshold at which firms are accused. The green curve corresponds to an experiment that sends two white 
and two black applications to each firm, and the red curve corresponds to sending five applications of each race. 
These two curves randomly assign a 2-valued covariate index of resume quality (high or low), defined as +/-1 the 
empirical standard deviation of this index. The blue curve shows results from sending the optimal mix of race and 
resume quality for each posterior threshold. Bold points correspond to 80% posterior thresholds.

Figure VI: Detection/error tradeoffs, Nunley et al. data



Figure VII: Logit and minimax risk, Nunley et al. data

Notes: This figure displays average risk generated by a hypothetical experiment sending five white and five black 
applications to jobs in the population studied by Nunley et al. (2015). Resumes are randomly assigned to high or 
low quality with equal probability, where quality is defined as +/-1 the empirical standard deviation of the logit 
covariate index. The horizontal axis plots the posterior threshold at which jobs are accused of discrimination. The 
risk function is 4 times the number of non-discriminators accused plus the number of discriminators not accused. 
Discrimination is defined as calling white applicants at a higher rate than black applicants. The blue curve displays 
risk using the logit data generating process in column (2) of Table X. The red curve plots minimax risk calculated 
by choosing the joint distribution of callback probabilities to maximize risk for each decision rule subject to the 
moments identified by the Nunley et al. (2015) experiment, restricted to decision rules that order jobs by the logit 
posterior threshold. Vertical dashed lines indicate risk-minimizing thresholds. The green curve displays the share of 
jobs that are innocent in the worst-case data generating process. 



Bertrand & Arceo-Gomez &
Mullainathan Nunley et al. Campos-Vasquez

(1) (2) (3)
Number of jobs 1,112 2,305 802

Applications per job 4 4 8

Treatment/control Black/white Black/white Male/female

Callback rates:    Total 0.079 0.167 0.123

Treatment 0.063 0.154 0.108

Control 0.094 0.180 0.138

Difference -0.031 -0.026 -0.030
(0.007) (0.007) (0.008)

Notes: This table reports sample characteristics based on data from three resume 
correspondence experiments. Columns (1) and (2) show statistics from Bertrand 
and Mullainathan's (2004) and Nunley et al.'s (2015) studies of racial 
discrimination in the United States. Column (3) reports statistics from Arceo-
Gomez & Campos-Vasquez's (2014) study of gender discrimination in Mexico. 
Standard errors for treatment/control differences, clustered at the job level, are 
in parentheses.

Table I: Descriptive statistics for resume correspondence studies



Main effect Leave-out mean Main effect Leave-out mean
Variable (1) (2) Variable (3) (4)

Black -0.028 -0.019 Married 0.001 0.002
(0.010) (0.027) (0.008) (0.033)

Female 0.010 0.009 Age 0.003 0.002
(0.010) (0.027) (0.003) (0.005)

High SES -0.233 -0.674 Scholarship -0.003 -0.060
(0.174) (0.522) (0.010) (0.050)

GPA -0.043 -0.153 Predicted callback rate -0.644 -0.136
(0.066) (0.198) (0.504) (0.888)

Business major 0.008 0.010
(0.008) (0.021)

Employment gap 0.011 0.034
(0.009) (0.023)

Current unemp.: 3+ 0.013 0.005
(0.012) (0.032)

6+ -0.008 -0.038
(0.012) (0.029)

12+ 0.001 0.021
(0.012) (0.032)

Past unemp.:    3+ 0.029 0.065
(0.012) (0.031)

6+ -0.011 -0.016
(0.012) (0.033)

12+ -0.004 0.019
(0.012) (0.031)

Predicted callback rate 0.476 -0.041
(0.248) (0.626)

Joint p -value Joint p -value
Sample size Sample size

Notes: This table reports results from tests of the assumption that applications at each job are independent trials. Estimates 
come from regressions of a callback indicator on a resume characteristic and the mean of this characteristic across other 
resumes at the same job. Columns (1)-(2) use data from Nunley et al. (2015), and columns (3)-(4) use data from Arceo-
Gomez and Campos-Vasquez (2014). The predicted callback rate is the fitted value from a regression of a callback 
indicator on all resume characteristics, jackknifed at the job level. P -value comes from a test of the hypothesis that 
coefficients on the leave-out mean are zero for all individual characteristics. Standard errors, clustered at the job level, 
appear in parentheses.

Table II: Tests for dependence across trials
Nunley et al. data AGCV data

0.452 0.589
9,220 6,416



No Shape 
constraints constraints

Moment (1) (2)
0.094 0.094

(0.006) (0.007)

0.063 0.063
(0.006) (0.006)

0.040 0.040
(0.005) (0.004)

0.023 0.023
(0.004) (0.003)

0.028 0.028
(0.004) (0.003)

0.015 0.014
(0.003) (0.002)
0.012 0.012

(0.003) (0.002)

0.010 0.010
(0.003) (0.002)
J -statistic: 0.00
P -value: 1.000

Sample size

Table III: Moments of callback rate distribution, BM data

1,112
Notes: This table reports generalized method of moments (GMM) 
estimates of moments of the joint distribution of job-specific white 
and black callback rates in the Bertrand and Mullainathan (2004) 
data. Estimates in column (2) come from a shape-constrained GMM 
procedure imposing that the moments are consistent with a well-
defined probability distribution. The J -statistic is the minimized 
shape-constrained GMM criterion function. The p -value come from 
a bootstrap test of the hypothesis that the model restrictions are 
satisfied. 

𝐸[𝑝$]

𝐸[𝑝&] 

𝐸 𝑝$ −𝐸[𝑝$] (

𝐸 𝑝& − 𝐸[𝑝&] (

𝐸 (𝑝$ −𝐸[𝑝$] )(𝑝&− 𝐸[𝑝&] )

𝐸 𝑝$− 𝐸[𝑝$] ((𝑝& −𝐸[𝑝&] )

𝐸 𝑝$ − 𝐸[𝑝$] 𝑝& −𝐸[𝑝&] (

𝐸 𝑝$ − 𝐸[𝑝$] ( 𝑝& − 𝐸[𝑝&] (



(2,2) (3,1) (1,3) Combined
design design design P -value estimates

Moment (1) (2) (3) (4) (5)
0.174 0.199 0.142 0.027 0.177

(0.010) (0.025) (0.015) (0.007)

0.148 0.149 0.157 0.854 0.153
(0.010) (0.015) (0.013) (0.007)

0.089 0.108 - 0.097 0.095
(0.007) (0.009) (0.004)

0.085 - 0.083 0.857 0.084
(0.007) (0.008) (0.004)

0.083 0.084 0.080 0.926 0.084
(0.006) (0.009) (0.009) (0.004)

- 0.051 - 0.106
(0.008) (0.006)

- - 0.044 0.092
(0.007) (0.006)

0.044 0.043 - 0.875 0.040
(0.004) (0.007) (0.002)
0.047 - 0.045 0.819 0.042

(0.005) (0.007) (0.002)

- 0.034 - - 0.035
(0.005) (0.002)

- - 0.037 - 0.037
(0.006) (0.002)

0.036 - - - 0.038
(0.004) (0.002)0

23.09
0.190

Sample size 1,146 544 550 2,240

Table IV: Moments of callback rate distribution, Nunley et al. data
Design-specific estimates

Notes: This table reports generalized method of moments (GMM) estimates of moments of the joint 
distribution of job-specific white and black callback rates in the Nunley et al. (2015) data. Columns (1), 
(2), and (3)  show estimates based on jobs that received 2 white and 2 black, 3 white and 1 black, and 1 
white and 3 black  applications, respectively. Estimates in column (4) come from a shape-constrained 
GMM procedure imposing that the moments are consistent with a well-defined probability distribution. 
The J -statistic is the minimized shape-constrained GMM criterion function. The p -value come from a 
bootstrap test of the hypothesis that the model restrictions are satisfied. 

J -statistic:
P -value:

𝐸[𝑝$]

𝐸[𝑝&]

𝐸 𝑝$ −𝐸[𝑝$] (

𝐸 𝑝& −𝐸[𝑝&] (

𝐸 (𝑝$ −𝐸[𝑝$])(𝑝& − 𝐸[𝑝&] )

𝐸 𝑝$ −𝐸[𝑝$] +

𝐸 𝑝& −𝐸[𝑝&] +

𝐸 𝑝$ −𝐸[𝑝$] ((𝑝& − 𝐸[𝑝&] )

𝐸 𝑝$ − 𝐸[𝑝$] 𝑝& − 𝐸[𝑝&] (

𝐸 𝑝$ − 𝐸[𝑝$] +(𝑝& −𝐸[𝑝&] )

𝐸 𝑝$ −𝐸[𝑝$] 𝑝& −𝐸[𝑝&] +

𝐸 𝑝$ −𝐸[𝑝$] ( 𝑝& − 𝐸[𝑝&] (



No Shape No Shape 
constraints constraints constraints constraints

Moment (1) (2) Moment (3) (4)
0.138 0.140 0.023 0.025

(0.010) (0.009) (0.004) (0.003)

0.108 0.114 0.019 0.024
(0.009) (0.009) (0.004) (0.003)

0.066 0.066 0.012 0.011
(0.009) (0.005) (0.003) (0.002)

0.048 0.054 0.013 0.013
(0.005) (0.005) (0.003) (0.002)

0.043 0.044 0.012 0.011
(0.005) (0.004) (0.003) (0.002)

0.025 0.063 0.012 0.012
(0.005) (0.007) (0.003) (0.002)

0.031 0.050 0.010 0.009
(0.005) (0.007) (0.002) (0.001)

0.020 0.017 0.010 0.009
(0.004) (0.002) (0.002) (0.001)

0.022 0.020 0.009 0.009
(0.004) (0.002) (0.002) (0.001)

0.015 0.015 0.008 0.007
(0.003) (0.002) (0.002) (0.001)

0.016 0.017 0.008 0.008
(0.003) (0.002) (0.002) (0.001)

0.016 0.016 0.009 0.006
(0.003) (0.002) (0.002) (0.001)

J -statistic: 3.33
P -value: 0.790

Sample size: 802

Table V: Moments of callback rate distribution, AGCV data

Notes: This table reports generalized method of moments (GMM) estimates of moments of the joint distribution of job-specific white 
and black callback rates in the Arceo-Gomez and Campos-Vasques (2014) data. Estimates in columns (2) and (4) come from a shape-
constrained GMM procedure imposing that the moments are consistent with a well-defined probability distribution. The J -statistic is the 
minimized shape-constrained GMM criterion function. The p -value come from a bootstrap test of the hypothesis that the model 
restrictions are satisfied.  

𝐸[𝑝$ ]

𝐸[𝑝&]

𝐸 𝑝$ − 𝐸[𝑝$]
(

𝐸 𝑝&− 𝐸[𝑝&] (

𝐸 (𝑝$ −𝐸[𝑝$ ])(𝑝&− 𝐸[𝑝&])

𝐸 𝑝$ − 𝐸[𝑝$]
+

𝐸 𝑝& − 𝐸[𝑝&] +

𝐸 𝑝$ − 𝐸[𝑝$]
((𝑝& − 𝐸[𝑝&])

𝐸 𝑝$ − 𝐸[𝑝$] 𝑝& −𝐸[𝑝&] (

𝐸 𝑝$ − 𝐸[𝑝$]
,

𝐸 𝑝& − 𝐸[𝑝&] ,

𝐸 𝑝$ −𝐸[𝑝$]
+(𝑝& −𝐸[𝑝&])

𝐸 𝑝$ −𝐸[𝑝$] 𝑝& − 𝐸[𝑝&] +

𝐸 𝑝$ − 𝐸[𝑝$]
( 𝑝&− 𝐸[𝑝&] (

𝐸 𝑝$ −𝐸[𝑝$ ]
,(𝑝& −𝐸[𝑝&])

𝐸 𝑝$ − 𝐸[𝑝$] 𝑝&− 𝐸[𝑝&] ,

𝐸 𝑝$ − 𝐸[𝑝$]
+ 𝑝& −𝐸[𝑝&] (

𝐸 𝑝$ − 𝜇$
( 𝑝& −𝐸[𝑝&] +

𝐸 𝑝$ − 𝐸[𝑝$]
, 𝑝&− 𝐸[𝑝&] (

𝐸 𝑝$ − 𝐸[𝑝$]
( 𝑝& −𝐸[𝑝&] ,

𝐸 𝑝$ − 𝐸[𝑝$]
+ 𝑝& −𝐸[𝑝&] +

𝐸 𝑝$ − 𝐸[𝑝$]
, 𝑝& −𝐸[𝑝&] +

𝐸 𝑝$ − 𝐸[𝑝$]
+ 𝑝&− 𝐸[𝑝&] ,

𝐸 𝑝$ − 𝐸[𝑝$]
, 𝑝&− 𝐸[𝑝&] ,



p b p w p b  - p w p b p w p b  - p w p m p f p m  - p f

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Mean 0.063 0.094 -0.031 0.153 0.177 -0.023 0.114 0.140 -0.025

(0.006) (0.007) (0.006) (0.007) (0.007) (0.005) (0.009) (0.009) (0.008)

Standard deviation 0.152 0.199 0.082 0.290 0.308 0.102 0.231 0.257 0.179
(0.011) (0.011) (0.012) (0.008) (0.007) (0.009) (0.011) (0.010) (0.011)

Correlation with p w or p f 0.927 1.000 -0.717 0.944 1.000 -0.336 0.735 1.000 -0.483
(0.055) - (0.089) (0.018) - (0.048) (0.035) - (0.051)

Skewness - - - 3.757 3.648 -4.450 4.067 3.748 -1.403
(0.074) (0.087) (0.405) (0.140) (1.161) (0.385)

Excess kurtosis - - - - - - 8.452 5.756 12.227
(1.458) (8.790) (2.291)

Table VI: Nonparametric estimates of treatment effect variation in resume correspondence studies
Bertrand & Mullainathan Nunley et al. Arceo-Gomez & Campos-Vasquez

Note: This table reports shape-constrained generalized method of moments (GMM) estimates of key features of the joint distribution of treatment and control 
callback rates in three resume correspondence studies. Columns (1)-(3) show estimates for black and white callback rates in Bertrand and Mullainathan 
(2004), columns (4)-(6) display estimates for black and white callback rates in Nunley et al. (2015), and columns (7)-(9) show estimates for male and female 
callback rates in Arceo-Gomez and Campos-Vasquez (2014). Standard error are computed using the numerical bootstrap procedure described by Hong and Li 
(2017).



Analytic Lin. prog. Pr(p w  ≥ p b ) Pr(p w  ≤ p b )
Callbacks (1) (2) (3) (4)

All - 0.870 1.000 0.870
0 - 0.962 1.000 0.962

1 0.637 0.576 1.000 0.576

2 0.621 0.558 1.000 0.558

3 0.560 0.492 1.000 0.492

4 - 0.788 1.000 0.788
J -statistic: 29.26 0.00 29.26

P -value: 0.000 1.000 0.000

Table VII: Upper bounds on shares not discriminating, BM data

Notes: This table reports upper bounds on the probability that jobs in the Bertrand and 
Mullainathan (2004) data do not discriminate based upon race. Column (1) shows 
upper bounds on the fraction of jobs that have the same callback rate for black and 
white applicants computed using the analytic formula in the text. Column (2) shows 
corresponding bounds computed by linear programming imposing constraints across 
callback strata. Column (3) and (4) show upper bounds on the fraction of jobs that are 
at least as likely to call white applicants as to call black applicants and vice versa, 
computed via linear programming. J -statistics and p -values come from bootstrap tests 
of the hypothesis that these probabilities equal one for all jobs.

Pr(p w  = p b )



Analytic Lin. prog. Pr(p w  ≥ p b ) Pr(p w  ≤ p b )
Design Callbacks (1) (2) (3) (4)

All All - 0.642 0.846 0.827
(2,2) 0 - 0.848 0.907 0.952

1 0.824 0.328 0.815 0.567

2 0.718 0.309 0.984 0.325

3 0.874 0.179 0.933 0.264

4 - 0.579 0.743 0.872

(3,1) 0 - 0.853 0.898 0.964
1 0.861 0.337 0.894 0.549

2 0.738 0.332 0.998 0.336

3 0.816 0.151 0.922 0.251

4 - 0.566 0.767 0.837
(1,3) 0 - 0.839 0.916 0.936

1 0.810 0.323 0.754 0.594
2 0.855 0.326 0.958 0.369
3 0.913 0.204 0.955 0.262
4 - 0.581 0.723 0.893

J -statistic: 62.64 23.46 62.64
P -value: 0.000 0.120 0.000

Table VIII: Upper bounds on shares not discriminating, Nunley et al. data

Notes: This table reports upper bounds on the probability that jobs in the Nunley et al. (2015) 
data do not discriminate based upon race. Column (1) shows upper bounds on the fraction of 
jobs that have the same callback rate for black and white applicants computed using the 
analytic formula in the text. Column (2) shows corresponding bounds computed by linear 
programming imposing constraints across callback strata. Column (3) and (4) show upper 
bounds on the fraction of jobs that are at least as likely to call white applicants as to call black 
applicants and vice versa, computed via linear programming. J -statistics and p- values come 
from bootstrap tests of the hypothesis that these probabilities equal one for all jobs.

Pr(p w  = p b )



Analytic Lin. prog. Pr(p f  ≥ p m ) Pr(p f  ≤ p m )
Callbacks (1) (2) (3) (4)

All - 0.723 0.911 0.812
0 - 0.864 0.960 0.905

1 0.968 0.105 0.586 0.520

2 0.460 0.284 0.740 0.544

3 0.495 0.424 0.953 0.472

4 0.522 0.497 0.945 0.553

5 0.687 0.654 0.829 0.825
6 0.662 0.591 0.788 0.803
7 0.875 0.514 0.843 0.671
8 - 0.924 0.989 0.935

J -statistic: 369.66 33.88 359.95
P -value: 0.000 0.005 0.000

Table IX: Upper bounds on shares not discriminating, AGCV data

Notes: This table reports upper bounds on the probability that jobs in the Arceo-
Gomez and Campos-Vasquez (2014) data do not discriminate based upon sex. 
Column (1) shows upper bounds on the fraction of jobs that have the same 
callback rate for male and female applicants computed using the analytic formula 
in the text. Column (2) shows corresponding bounds computed by linear 
programming imposing constraints across callback strata. Column (3) and (4) show 
upper bounds on the fraction of jobs that are at least as likely to call female 
applicants as to call male applicants and vice versa, computed via linear 
programming. J -statistics and p -values come from bootstrap tests of the 
hypothesis that these probabilities equal one for all jobs.

Pr(p f  = p m )



Constant No selection Selection
(1) (2) (3)

      Distribution of logit(pw):   𝛼0 -4.708 -4.931 -4.927
(0.223) (0.242) (0.280)

𝜎𝛼 4.745 4.988 4.983
(0.223) (0.249) (0.294)

  Discrimination intensity:  𝛽0 0.456 4.046 4.053
(0.108) (1.563) (1.576)

   Discrimination logit:      𝜏0 - -1.586 -1.556
(0.416) (1.098)

𝜏𝛼 - - -0.005
(0.180)

Fraction with p w  ≠ p b  : 1.000 0.168 0.170

Log-likelihood -2,792.1 -2,788.2 -2,788.2
Parameters 15 16 17
Sample size 2,305 2,305 2,305

Table X: Mixed logit estimates, Nunley et al. data

Notes: This table reports estimates of logit models for callback probabilities in the 
Nunley et al. (2015) data. All models include a normally distributed job-specific 
intercept. Column (2) allows for two discrete types of jobs, one of which does not 
discriminate based upon race. Column (3) allows the probability of discrimination 
to depend on the job-specific intercept. Models are estimated by simulated 
maximum likelihood using 1,000 Halton draws of the intercept for each job. All 
models include resume covariates which are de-meaned in the estimation sample. 
Robust standard errors in parentheses.
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