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Chapter 11

tatistical Mechanical Models
or Social Systems

arter T. Butts

Inrecent years, researchers in the area of constructal theory have sought to apply
principles from the modeling of engineered systems to problems throughout the
sciences. This chapter provides an application of statistical mechanical models
to social systems arising from the assignment of objects (e.g., persons, house-
holds, or organizations) to locations (e.g., occupations, residences, or building
sites) under the influence of exogenous covariates. Two illustrative applications
(occupational stratification and residential settlement patterns) are presented, and
simulation is employed to show the behavior of the location system model in
each case. Formal analogies between thermodynamic and statistical interpreta-
tions of model elements are discussed, as is the compatibility of the location
system model with the assumption of stochastic optimization behavior on the
part of individual agents.

11.2. Introduction

At their core, developments in the growing body of literature known as
“constructal theory” (Bejan 1997, 2000; Bejan and Lorente 2004; Bejan and
Marden 2006; Reis and Bejan 2006) reflect an effort to apply principles from
the modeling of engineered systems to problems throughout the sciences. In
tlns respect, constructal theory falls within the tradition of researchers such
as lef (1949) and Calder (1984), who have sought to capture the behavior
of a (.ilverse array of systems via a combination of physical constraints and
optimization processes. Within the social sciences, constrained optimization has
been cex'ltral to research on choice theoretic models (the dominant paradigm in
tconomics) and has had a strong influence on the literatures in organization
FhCO.ry (particularly organizational design) and human judgment and decision
maklr.lg: While optimization-based models have not always proven correct, their

plicity and generalizability continue to attract interest from researchers in
Many fields. In contrast, physical constraints — or even models borne of physical
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processes — have seen only intermittent integration into social science research; ’
This is unfortunate, given both the reality of physical limits on social organization
and the potential applicability of certain physical models to social systemg*

Here, we describe one modeling framework which incorporates both elementg
to capture the behavior of high-dimensional social systems whose components

exhibit complex dependence. Although inspired by related models within socia]
network analysis, this framework can be shown to admit a physical interpretation, -
thereby facilitating the application of insights from other fields (particularly
statistical mechanics) to a broad class of social phenomena. It is hoped that the
results shown here will serve to encourage further development of social models

which capitalize on analogies with physical processes.

11.2.1. Precursors Within Social Network Analysis

A fundamental problem facing researchers in the social network field hag

been the need to model systems whose elements depend upon one another
in non-trivial ways. For instance, in modeling directed relations (i.e., those

with distinct senders and receivers), it will generally be the case that ties (or

“edges,” in the language of graph theory) sharing the same endpoints will

depend upon one another. This form of dependence (called dyadic dependence)
was combined with the notion of heterogeneity in rates of tie formation to
form the first family of what would eventually be called exponential random

graph models, the p, family (Holland and Leinhardt 1981). While dyadic
dependence was relatively simple in nature, the models created to cope with
it were rapidly expanded into more complex cases. For instance, Frank and.

Strauss (1986) famously considered graph processes in which two edges are

dependent if they share any endpoint; this lead to the Markov graphs, whose

properties are far more intricate than those of processes exhibiting only dyadic

dependence. Extensions to other, still more extensive forms of dependence
followed (e.g., Strauss and Ikeda 1990; Wasserman and Pattison 1996; Pattison.
and Wasserman 1999; Robins et al. 1999; Pattison and Robins 2002), along
with corresponding innovations in simulation and inferential methods (Crouch:

et al. 1998; Snijders 2002; Hunter and Handcock 2006).

For our present purposes, it is important to emphasize that these devel-
opments did not arise from efforts within the social network field alone.
Rather, they resulted from an interdisciplinary synthesis in which insights
from areas such as spatial statistics (e.g., Besag 1974, 1975) and statis-.

tical physics (Strauss 1986; Swendsen and Wang 1987), as well as
innovations in computing technology and simulation methods (Geyer and

* Recognition of this connection is at least as old as the founding of sociology, which was

initially envisioned as leading to a form of “social physics” (Quetelet 1835, Comte 1854).
Although primarily invoked for rhetorical purposes, this stance foreshadowed later

developments such as the work of Coleman (1964), who drew extensively on physical
models. .
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~ Thompson 1992; Gamerman 1997), were leveraged to formulate and solve

problems within the social sciences. In the best tradition of such “borrowing,”
scientific 4dvances were made neither by ignoring external developments nor by
blindly importing models from other disciplines (nor still by an “invasion” of
scientists from these disciplines into the network field). Progress resulted instead
from the recognition of structural similarities between problems in network
research and problems in other substantive domains, followed by the adaptation
and translation of models from these fields into the network context. This
approach has allowed network researchers to avoid many of the pitfalls identified
by Fararo (1984) associated with the importation of mathematically attractive
models’with poor empirical motivation. It may also serve as a useful example to
be emulated by workers in areas such as constructal theory, who seek to apply
their ideas to novel substantive domains.

While the focus of this chapter is not on network analysis, the approach taken
here owes much to the exponential family modeling tradition described above. It
also draws heavily on the statistical mechanical framework to which that tradition
is closely related. More specifically, this chapter presents a family of models
for social phenomena which can be described in terms of the arrangement of
various (possibly related) objects with respect to a set of (again, possibly related)
locations. This family is designed so as to leverage the large literature on the
stochastic modeling of systems with non-trivial dependence structures. It is also
constructed so as to be applicable across a wide range of substantive contexts;
to scale well to large social systems; to be readily simulated; to be specifiable in
terms of directly measurable properties; and to support likelihood-based inference
using (fairly) standard methods. Although this model family is not obviously
“constructal” in the sense of Bejan (1997, 2000), it does incorporate elements of
(local) optimization and physical constraint. Thus, it may be of some interest to
those working in the area of constructal theory per se.

The structure of the remainder of the chapter is as follows. After a brief
comment on notation, we present the core formalism of the chapter (the gener-
alized location system). Given this, we turn to a discussion of modeling location
systems, including both conceptual and computational issues. Finally, we illus-
trate the use of the location system model to examine two classes of processes
(occupational stratification and residential settlement patterns), before concluding
with a brief discussion.

11.2.2. Notation

We here outline some general notation, which will be used in the material which
follows. A graph, G, is defined as G = (V, E), where V is a set of vertices and
E is a set of edges on V. When applied to sets, |-| represents cardinality; thus
V[ is the number of vertices (or order) of G. In some cases (particularly when
dealing with valued graphs), it will be useful to represent graphs in adjacency
matrix form, where the adjacency matrix X for graph G is defined as a V| x |V]
matrix such that X is the value of the (i, j) edge in G. By convention, X;=0
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if G contains no (i, j) edge. A tuple of graphs (G, ..., G,) on common vertex
set V may be similarly represented by a n x [V| x [V| adjacency array, X, such |
that X; is the adjacency matrix for G; . .

When referring to a random variable, X, we denote the probability of 3
particular event x by Pr(X = x). More generically, Pr(X) refers to the probability -
mass function of X (where X is discrete). Expectation is denoted by the operator
E, with subscripts used to designate conditioning where necessary. Thus, the
parametric pmf Pr(X|6) leads to the corresponding expectation Eq (X). (Likewise
for variance, written Vary(X).) When discussing sequences of realizations of
a random variable X, parenthetical superscript notation is used to designate k
particular draws (e.g., (x,...,x®™)). Distributional equivalence is denoted
by ~ (read: “is distributed as”), so X ~ Y implies that X is distributed as Y. For
convenience, this notation may also be extended to pmfs, such that X ~f (for
random variable X and pmf f) should be understood to mean that X is distributed
as a random variable with pmf f.

11.3. Generalized Location Systems

Our focus here is on what we shall call generalized location systems, which
represent the allocation of arbitrary entities (e.g., persons, objects, organizations)
to “locations” (e.g., physical regions, jobs, social roles). While our intent is
to maintain a high level of generality, we will limit ourselves to systems for
which both entities and locations are discrete and countable, and for which it
is meaningful to treat the properties of entities and locations as relatively stable ]
(at least for purposes of analysis). Relaxation of these constraints is possible,
but will not be discussed here; even with these limitations, however, the present
framework still allows for a great deal of flexibility. L
We begin by positing a system of n identifiable objects, O = (04, ...,0,), each
of which may reside in exactly one of m identifiable locations, L = (1, ..., 15).
The state of this system at any given time is represented by a configuratio
vector, £ € {1, ..., m}", which is defined such that £; = j iff o, resides at location
I;. Depending on the system in question, not all hypothetical configuration vectors
are physically realizable; the set of all such realizable vectors is said to be the
set of accessible configurations, and is denoted C. C may be parameterized
in a number of ways, perhaps the most important of which being in terms of
occupancy constraints. We define the occupancy function of a location system

P(x,8)= il ¢, =x),

i=l

where I is the standard indicator function. The vectors of maximum and minimum
occupancies for a given location system are composed of the maximum/minimum
values of the occupancy function for each state under C (respectively). That is;
we require that P, <P(i, £) <P{ forallie 1, ..., m, £ €C, where P~, Ptarethe
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minimum and maximum occupancy vectors. If P; = Pi+ =1V iel,...,m,
then it follows that £ is a permutation vector on 1, ..., n, in which case we must

have m =1 fqrfnon~empty C. This is an important special case, particularly in
organizational contexts (White 1970). By contrast, it is frequently the case in
geographical contexts (e.g., settlement) that P =0andP;">n V iel,...,m,
in which case occupancy is effectively unconstrained.

In addition to configurations and labels, objects and locations typically possess
other properties of scientific interest. We refer to these as features, with F being
the set of object features and F; being the set of location features. While we
do not (initiz;lly) place constraints on the feature sets, it is worth highlighting
two feature types which are of special interest. Feature vectors provide ways of
assigning numerical values to individual objects or locations, e.g., age, average
rent level, or wage rate. Adjacency matrices can also serve as important features,
encoding dyadic relationships among objects or locations. Examples of such
relationships can include travel distance, marital ties, or demographic similarity.
Because relational features allow for coupling of objects or locations, they play
a central role in the modeling of complex social processes (as we shall see).

To draw the above together, we define a generalized location system by
the tuple (L, O, C,F,,Fy). The state of the system is given by ¢, which will
be of primary modeling interest. Varjous specifications of C are possible, but
particular emphasis is placed on occupancy constraints, which specify the range
of populations which each location can support. With these elements, it is possible
to model a wide range of social systems, and it is to this problem that we
now turn.

11.4. Modeling Location Systems

Given the definition of a generalized location system, we now present a stochastic
model for its equilibrium state. In particular, we assume that — given a set of
accessible configurations, C— the system will be found to occupy any particular
configuration, £, with some specified probability. Our primary interest is in the
modeling of these equilibrium probabilities, although some dynamic extensions
are possible.

Given the above, we first define the set indicator function

1 ifeeC

0 otherwise (112)

Ic(€) = {

The equilibrium probability of observing a given configuration can then be

written as

exp (P (£))

> vec exp (P (2)) (11.3)

Pr(S = £) =1(f)
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certain cases (e.g., where one must enforce a functional relationship among large
numbers of parameters; see Hunter and Handcock 2006, for a network-related
example). Hergz;'/ we restrict ourselves to the linear case.

Even if a linear form is supposed, however, we are still left with the question
of which effects should be included in the social potential. By definition, these
effects must be parameterized as functions of the location and object features.
Further, both location and object features (as we are using the term) can include
poth attributes (features of the individual location or object per se) and relations
(features of object or location sets). Here, we will limit ourselves to relations
which are dyadic (i.e., defined on pairs) and single-mode (i.e., which do not mix
objects and ﬁ)cations). Thus, our effects should be functions of feature vectors,
and/or (possibly valued) graphs.

While this constraint still admits a wide range of possibilities, we can further
focus our attention by noting that the purpose of P is ultimately to control the
assignment of objects to locations. This suggests immediately that the effects
of greatest substantive importance will be those which draw objects toward or
away from particular locations. Table 11.1 provides one categorization of such
effects by feature type. In the first (upper left) cell, we find effects which express
direct attraction or repulsion between particular objects and locations, based
on their attributes. In the second (upper right) cell are effects which express a
tendency for objects linked through connected locations to be particularly similar
or distinct. (Spatial autocorrelation is a classic example of such an effect.) The
converse family of effects is found in the third (lower left) cell; these effects
represent a tendency for objects to be connected to other objects with similar (or
different) locations. Homophily in career choice—where careers are interpreted
as “locations”—serves as an example of a location homogeneity effect. Finally,
in the fourth (lower right) cell we have effects based on the tendency of location
relations to align (or disalign) with object relations. Propinquity, for example, is
a tendency for adjacent objects to reside in nearby locations.

Taken together, these four categories of effects combine to form the social
potential. Under the assumption of linear decomposability, we thus posit four
sub-potentials (one for each category) such that

P (£) =P, (£)+Pg (£) +P, (&) +P; (£). (115)

where S is the random state, and P is a quantity called the social potentia]
(defined below). The sum

Z(P,C) =Y exp(P(£)) (11.4)

'eC

is the normalizing factor for the location model, a quantity which corre-
sponds directly to the partition function of statistical mechanics (Kittel and -
Kroemer 1980). Equation (11.3) defines a discrete exponential family on the
elements of C, and is complete in the sense that any pmf on C can be written
in the form of Eq. (11.3). This completeness is an important benefit of the -
discrete exponential family framework, but there are other benefits as well. For
instance, models of this type have been widely explored in both physics and
mathematical statistics (see, e.g., Barndorff-Nielsen 1978; Brown 1986), facil ‘
itating the cross-application of existing knowledge to new modeling problems
Also significant is the fact that, for appropriate parameterizations of P, a number
of well-known results allow for likelihood-based inference of model parameters
from empirical data (Johansen 1979). These advantages may be contrasted with,
for instance, those of intellective agent-based approaches, which (while dynam '
ically flexible) frequently exhibit poorly understood behavior, and which rarely
admit a principled theory of inference. ;
While Eq. (11.3) can represent any distribution on C, its scientific utility
clearly lies in identifying a theoretically appropriate specification of P.
Intuitively, the social potential for any given configuration is equal to its log-
probability, up to an additive constant. Thus, the location system is more likely
to be found in areas of high potential, and/or (in a dynamic context) to spend
more time in such states. While any number of forms for P could be proposed,
we here work with a constrained family which incorporates several features of
known substantive importance for a variety of social systems. This family of
potential functions is introduced in the following section.

11.4.1. A Family of Social Potentials

As noted above, we seek a family of functions P: C R such that Pr(S= £) x
exp(P(£)). This family should incorporate as wide a range of substantively
meaningful effects as possible; since it is not reasonable to expect effects to be

4 - TasLe 11.1. Elements of the social potential
jdentical in every situation, the family should be parameterized so as to allow

differential weighting of effects. Ideally, the social potential family should also Location atiributes Location relations
be easily computed, and its Stmcmr? easily 1ntelzpreted. . Object Attributes Attraction/Repulsion Object Homogeneity/
An obvious initial solution to this problem is to construct P from a linear Effects Heterogeneity
combination of deterministic functions of F and Fo, which then act as sufficient Effects (throngh
statistics for the resulting distribution. Employing such a potential function within ) Locations)
Object Relations Location Alignment Effects

Eq. (11.3) leads to a regular exponential family on C (Johansen 1979), which has
a number of useful statistical implications. The so-called “curved” exponential
family models (which are formed by allowing P to be a non-linear function of
statistics and parameters) (Efron 1975) are also possible, and may be useful in

Homogeneity/Heterogeneity
Effects (through
Objects)
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We now consider each of these functions in turn. The first class of effect
which must be represented in any practical location system are globy
attraction/repulsion—also called “push/pull”—effects. Residential locations,,
potential firm sites, occupations, and the like have features which make thep,
generally likely to attract or repel certain objects (be they persons, organizationg,
or other entities). Such effects are naturally modeled via product-moments of
attributes. Let Q € R™*2, X € R**® be exogenous features reflecting location ang
object attributes (respectively), and let « € R* be a parameter vector. Then we
may define P, as '

Jocation are reversed: absolute differences are now taken with respect to location
 features, and are evaluated with respect to the connections between the objects
occupying said locations.

The final elemént of the social potential is the alignment potential, P,
_ which expresses tendencies toward alignment or disalignment of object and
 [ocation relations. Given object and location adjacency arrays W € Réx#x1 and
D eR¥™™ (respectively) and parameter vector & € RY, the alignment potential
_ js given by

d
" Ps(£) = > 8;t2(¢) (11.12)
P, () =) ot (£) " i=1
i=1 d n n
22 ‘ : =280 WyDig . (11.13)
=y o Zerini’ (1.7 =1 j=l k=l o
=1 =l

where, as in the prior cases, t® represents the vector of sufficient statistics. The
form chosen for t? is Hubert’s Gamma, which is the standard matrix cross-product
moment (see Hubert 1987, for a range of applications).

It should be noted that all four effect classes can actually be written in terms of
matrix cross-product moment statistics on suitably transformed adjacency arrays,
and hence only Pj is formally required to express P. Although formally equivalent
to that shown above, this parameterization obscures the substantive interpretation
of matrix/vector effects outlined in Table 11.1, and requires pre-processing of
raw adjacency data; for this reason, we will continue to treat the sub-potentials
as distinct in the treatment which follows. Given this parameterization, we may
complete our development by substituting the quantities of Egs. (11.7-11.13)
into Eq. (11.5) which gives us

where t* is a vector of sufficient statistics.

A second class of effects concerns object homogeneity/heterogeneity—that
is, the conditional tendency for associated locations to be occupied by objects
with similar (or different) features. Let Y € R"*® be a matrix of object attributes
B € Rb*™™ be an adjacency array on the location set, and € R® a paramete)
vector. Then we define the object homogeneity/heterogeneity potential by

Pg(0) = 1Bt (0)

b n n
=Y B> > Bige, Vi — Y-

=1 j=lks=l

where, as before, t# is a vector of sufficient statistics. It should be noted tha
the form of t# is closely related to Geary’s C, a widely used index of spatial
autocorrelation (CLiff and Ord 1973). t? is based on absolute rather than squared
differences, and is not normalized in the same manner as C, but its behavior is |
qualitatively similar in many respects. , .

The parallel case to P, is P, which models the effect location homogeneity
or heterogeneity through objects. Let R € R™*¢ be a matrix of location features
A e R0 be an adjacency array on the object set, and y € R® be a paramete
vector. Then P, is defined as follows:

a b c d
P =D ot (8) + 2 Bitf (O + vt (O + 28t (£) (11.14)
i=1 i=1 i=1 i=1

in terms of sufficient statistics, or

a n b non
P)=) o). Qi Xji+ B Bige, |in - Ykil
=1 =1 =1 j=1k=l

(11.15)

c n n d n n
YV Ay lReji —Ryi[+28 22 WiiDige,

=1  j=1k=l i=1  j=1k=l

¢ in terms of the underlying covariates. Together with Eq. (11.3), Eq. (11.15)
P,(¢) = Z’Yat? ) (11.10 specifies a regular exponential family of models for the generalized location

i=1 system. As we have seen, this family allows for the independent specification of
attraction/repulsion, heterogeneity/homogeneity, and alignment effects. Although
motivated on purely social grounds, it is noteworthy that this model is funda-
mentally statistical mechanical in nature. Given the broader focus of this book
. on the application of physical modeling strategies to a wide range of substantive
areas, we now consider this connection in greater detail.

, (1111

[~ n n
= Z Yi Z Z Aijk IReji - Reki

i=1  j=1lk=1

As implied by the above, t? is the vector of sufficient statistics for locatio
homogeneity. t? is at core similar to t#, save in that the role of object an
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model implements a notion of precisely this sort, for more general social systems.
As exponential family models also have the property of maximizing entropy
conditional on thc"lr parameters and sufficient statistics, these location system
models can also be thought of as a family of baseline models in the sense
of Mayhew (1984a).

In addition to providing insight into system behavior, the above relations are
also helpful in deriving other characteristics. For instance, the average microstate
energy of the system described by Eq. (11.16) is given by dF/d6, where § = 77'.
It follows for our purposes that

11.4.2. Thermodynamic Properties of the Location
System Model

We have already seen that the stochastic location system model of Eq. (113
can be viewed as directly analogous to a standard class of statistical mechanica]
models. This fact allows us to employ some useful results from the physjcs
literature (see, e.g., Kittel and Kroemer 1980) to elucidate several aspects of -
model behavior. (Interestingly, many of these results have parallels within the
statistical literature, and can be derived in other ways; see, e.g., Barndorff.
Nielsen (1978). See also Strauss (1986) for a similar discussion in the context
of exponential random graph models.)

As noted above, the normalizing factor Z(P C) is directly analogous to the
partition function of statistical mechanics. The quantity F=—InZ(P,C), in turn,
corresponds to the free energy of the location system. In a classical statistical .
mechanical system, the probability of observing the system in microstate j is
given by

~dInZ(P,C)

L
E o TN
(,8,7.8) 5 a6, ; (11.18)

where 6, represents any parameter of the system. Thus, expectations for arbitrary
sufficient statistics can be obtained through the partition ﬁmction Second
moments may be obtained in a similar manner: the Hessian matrix = de’ ylelds
the variance-covariance matrix for all sufficient statistics in the system. (In the
_ physical case, this corresponds to the energy fluctuation, or the variance in
energy.)

Moments of sufficient statistics are useful for a variety of purposes, but
other statistical mechanical properties of the location system may also be of
value. For instance, the “heat capacity” of the system for parameter 6, is given
by Var(t?(£))6? = _d%f[ 2. In the physical case, heat capacity reflects the
capacity of a system toustore energy (in the sense of the change in energy
per unit temperature). Here, heat capacity for parameter 6; reflects the sensi-
tivity of the corresponding statistic t¢ to changes in the “temperature” 1/6; .
For instance, if 8, corresponds to a attraction parameter between income and
gender, then heat capacity can be used to parameterize the income consequences
of a weakening (or strengthening) of the attractive tendency within the larger
system.

Using arguments similar to the above, it is possible to derive analogs to various
other thermodynamic properties such as pressure and entropy (the latter also
obtainable through information-theoretic arguments). While one must always
be careful in interpreting such quantities, they may nevertheless provide inter-
esting and useful ways of describing the properties of location systems. We will
see some of the interpretational value of thermodynamic analogy below, when
we consider some sample applications of the location system model; before
- proceeding to this, however, we turn to the question of how location system
behavior may be simulated.

exp(—e./7) -
= (11.16)
where g; is the microstate energy of j and 7 is the temperature. Thus, the

log- probabﬂlty of microstate j is a linear function of the free and mlcrostate"
energies:

&; -
Inp; = - (1117

Returning to Eq. (11.3), it is immediately apparent that the social potential
P plays the role of —&/7. Indeed, inspecting Eq. (11.14) reveals an even closer
correspondence: the realizations of the sufficient statistics associated with the
elements of t2, tB, t7, and t® are similar to microstate energies, and the corre-
sponding parameters (e, 3, v, and 8) can be thought of as vectors of inverse
temperatures. More precisely, each sufficient statistic is analogous to the energy
function (or Hamiltonian) associated with a particular “mode” of £, just as
the total microstate energy of a particle system might combine contributions
from translational, rotational, and/or vibrational modes. The “energy” associated
with a particular microstate, £, in each mode is given by the value of the
sufficient statistic for that microstate (i.e., t'(£)). As in the physical case, the
log-probability of observing a particular reahzatlon of the location system canbe.
expressed as a “free energy” minus a linear combination of microstate “energies
whose coefficients correspond to “inverse temperatures.” While one does not
conventionally encounter multiple temperatures in a physical system (although.
a close examination of parameters such as the chemical potential shows them
to act as de facto temperature modifiers), we will find that this metaphor.
useful in understanding the behavior of the location system This point was
foreshadowed by Mayhew et al. (1995), who invoked an “energy distribution.
principle” in describing the occurrence of naturally forming groups. The present

11.4.3. Simulation

For purposes of both prediction and inference, it is necessary to simulate the
behavior of the location system model for arbitrary covariates and parameter
values. Generally, it is not possible to take draws from the location system
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model directly due to the large size of C: except in very special cases, the
computational complexity of calculating Z(P, C) is prohibitive, and hence the
associated probability distribution cannot be normalized. Despite this limitatioﬂ,
approximate samples from the location system model may be readily obtainegq
by means of a Metropolis algorithm. Given that numerous accessible referenceg
on the Metropolis algorithm and other Markov chain Monte Carlo methods
are currently available (see, e.g., Gamerman 1997; Gilks et al. 1996; Gelmap
et al. 1995), we will focus here on issues which are specific to the model at hang
Fortunately, the location systemn model is not especially difficult to simulate,
although certain measures are necessary to ensure scalability for large systems:

To review, a Metropolis algorithm proceeds in the following general manner
(see Gilks et al. 1996, for further details). Let S be the (random) system state, We
begin with some initial state £© € C, and propose moving to a candidate state ¢()
which is generally chosen so as to be in a neighborhood of £©. (Some additiona]
constraints (e.g., detailed balance) apply to the candidate distribution, but these
do not affect the results given here.) The candidate state is then “accepted”

with probability min (1 P—r(-sf—em). If accepted, the candidate becomes our

each agent must have a non-zero probability of having the opportunity to move
to any given location through some move sequence in finite time), this process
forms a Markov ¢hain whose equilibrium distribution is proportional to u; indeed,
it is a special .case of the Metropolis algorithm, described above. Given this,
it follows that the equilibrium behavior of such a system can be described
by the location system model in the case for which u = P. While this is not
the only dynamic system which gives rise to this equilibrium distribution, it is
_pevertheless sufficient to show that the location system model can arise from a
process of constrained stochastic optimization. This constitutes another affinity
with the constructal perspective, albeit an attenuated one (since the optimization
involved is only approximate).

11.5. Illﬁstrative Applications

The location system model can be employed to represent a wide range of social
systems. This breadth of potential applications is illustrated here by means of
two simple examples, one involving economic inequality and another involving
residential segregation. Although both examples shown here are stylized for
purposes of exposition, they do serve to demonstrate some of the phenomena
which can be captured by the location system model.

* PrS=LO|P,C)
new base state, and we repeat the process for £?. If rejected, £() is replaced
by a copy of £©, and again the process is repeated. This process constitutes a
Markov chain whose equilibrium distribution (under certain fairly broad condi-
tions) converges to the target distribution (here, Pr(S|P, C)). It is noteworthy
that this process requires only that the target distribution be computable up to
a constant factor; this feature makes Metropolis algorithms (and related MCMC
techniques) very attractive to those working with exponential family models
(e.g., Strauss 1986; Snijders 2002; Butts 2006).

11.5.1. Job Segregation, Discrimination, and Inequality

Our first application employs the location system to model occupational strat-
ification. We begin by positing a stylized “microeconomy” of 100 workers
(objects), who are matched with 100 distinct jobs (locations) on a 1:1 basis. The
population of workers is taken to consist of equal numbers of men and women,
who are allocated at random into heterosexual couples such that all individuals
have exactly one partner. To represent other individual features which may affect
labor market performance, we also rank the workers on a single dimension of
“human capital,” with ranks assigned randomly in alternating fashion by gender.
(Thus, males and females have effectively identical human capital distributions,
and human capital ranks are uncorrelated within couples.) Like workers, jobs
vary in features which may make them more or less desirable; here, we assign
each job a “wage” (expressed in rank order), and group jobs into ten contiguous
occupational categories. Thus, the top ten jobs (by wage) are in the first category,
the next ten are in the second category, etc. While this setting is greatly simplified,
it nevertheless allows us to explore basic interactions between occupational
segregation, household effects, and factors such as discrimination. Elaborations
such as hierarchical job categories, distinct unemployed states, additional job or
worker attributes, and relaxations of 1:1 matching, could easily be employed to
mode] more complex settings.

To examine the behavior of the location system model under different
assignment regimes, we simulate model draws across a range of parameter values.

11.4.3.1. The Location System Model as a Constrained Optimization
Process

In addition to the application of analogies from physical systems, a central
element of constructal theory is constrained optimization. In that regard it is
interesting to note that the equilibrium behavior of the location system model
can be shown to emerge from a choice process in which individual agents
(here, our “objects™) act to stochastically maximize a utility function, subject to
constrained options. In particular, let u(€) be the utility of configuration £ for
each agent, and let us imagine that opportunities for agents to change location '
arrive at random times. When such an opportunity arises, the agent in question is
able to choose between moving to a specified alternative location and remaining
in place. If the move in question is utility increasing (i.e., if u(¢’) > u(¢) for
a move leading to location vector £'), then the agent relocates. Otherwise, we
presume that the agent has some chance of moving regardless, corresponding.
to exp [u(£) —u(£)]. This can be understood as a form of bounded rationality,
in which agents occasionally overestimate the value of new locations, or-as
arising from unobserved heterogeneity in agent preferences. Under fairly mild
conditions regarding the distribution of movement opportunities (most critically,
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For instance, the first panel of Fig. 11.1 shows the mean male/female wage gap '
(i.e., the difference between mean male and female wages) under a model incor.

porating human capital and discrimination effects. Both effects are implementeq £ . . . o o -
as o parameters, and thus reflect general sorting tendencies; in particular, higher P e -..-' .ot . ‘. R o . . R
values of «, (discrimination) reflect stronger tendencies to place males in high- ' Ll P e L % te . -
wage occupations, while higher values of @, (human capital) reflect stronger T R tte N b °Te te. 3
tendencies to place workers with high levels of human capital in high-wage = R ) S ., . .'- :'. .:
occupations. At &; = 0, the corresponding tendency is fully inactive; & = (0, 0) ©g T e e Ny ok, ® |2
is thus a random mixing model. Negative values of «, indicate discrimination § g Lo s S .' o %% ‘gp| © 5
in favor of females (i.e., a tendency to place males in low-wage occupations); T RS R ; * “ o, % o - E
since human capital is unlikely to have a negative effect on earnings, negative @, - S e - o’ S .%o 'oc;)‘ ors é
values are not considered. Within Fig. 11.1, each plotted circle corresponds to the £ "'; . YL e A ) 00% o/ £
outcome of a simulation at the corresponding coordinates. Circle area indicates 82 L LT T e S0 @ | g g
the magnitude of the observed effect (mean gap for the left-hand panel, variance § = .. .,: L e i ’ o, °°oo°°o o B K
in wage gap for the right-hand panel) and shading indicates the mean direction > e e ey T e L C e 0, O
of the gap in question (dark favoring males and light favoring females). For the o . T LA go OO: o oo . —3 ‘§
simulation 500 coordinate pairs were chosen, and 1,000 MCMC draws taken at . °° A o . ° e, % %, ' =
each pair (thinned from a full sample of 200,000 per pair, with a burn-in period ' Lo e et Ll %, °°.° 0 °° 4 o “lw i
of 100,000 draws). To speed convergence, all chains were run in parallel using ’ g §
a coupled MCMC scheme based on Whittington (2000), with state exchanges 1 g
among randomly selected chain pairs occurring every 25 iterations. Coordinates , ST0°0 SZIIO‘O Iol‘o SL(;O'O 50:)'0 SZ(;O'O (l) g
were placed using a two-dimensional Halton sequence (Press et al. 1992), as - (?0) o ende) vewngy -
this was found to produce more rapid convergence for the coupled MCMC g
sampler than a uniform grid (but covers the space more evenly than would a e o ® o _S
pseudo-random sample). As shown by the first panel of Fig. 11.1, increasing ‘ ®oog © o X S e 3‘.‘0 ) “ s E
discrimination in favor of males (@, > 0) or females (&; < 0) generates a corre- ' @ * ‘:”‘ ; ",..'o: ] 7Y @ ‘ E
sponding increase in the wage gap. This effect is persistent, but attenuates in the | § ° ..‘ 00 ‘* % '.o. % ® ‘~ - E g
presence of strong human capital effects; since human capital is here uncorrelated Eﬂ; ° '_'. .. ® ‘. ® :o: ol .‘. ~.~ é ::.
with gender, selection on this dimension tends to “dampen out” the effects of £ < oo . ° %% 0““ o ~" .5. ? | g
discrimination. This is particularly clear in the second panel of Fig. 11.1, which < O . % .' o o %o | ° 5 E:’n
shows that wage gap variance diminishes rapidly as the merit effect climbs. B, Tt T 0% “ % PO
Thus, both the stratified and unstratified states arising in the upper portion of the § oo e e JL E E g
parameter space are appreciably lower in variance than the unstratified region & A ) S .o 00%063 £ g
close to the origin, an effect which is not captured by the mean gap alone. T T o8 % 0° o w® o 0 2 E
An interesting counterpoint to the purely inhibitory effect of additional o & FENE AR Joo on P D OOCDO O s A8 =
effects (here, human capital) on stratification is the impact of occupational E e 5 %5 ° OOO Oc:;’ ooo ® q??OO §
segregation. To capture the latter effect, we replace the second « effect with 2 g . ° o°°°o o0 choo o o C8 o _'E e
B effect expressing the tendency for jobs within the same occupational category. o ooo°°0 S o o % @ O P f%) ! 3
to be more (or less) heterogeneous with respect to their gender composition. o R Cbooooo o Oy °°.0‘ 9) ooé‘ ™ )
Negative B effects act to inhibit heterogeneity, and hence model (in this context) °o 70 9 ®¥ o0 - ;| f
the effect of occupational segregation. Positive B values, by contrast, imply, , -
supra-random mixing (as might be produced, for instance, by an affirmative SI:)'O SZIIG'O I(;’O S LOIG'() 50:),0 SZOIO'O (') i
action policy). The results from simulations varying both effects are shown 11 _a
3

(0) Yooy evde) vemny

Fig. 11.2 (simulations for Figs. 11.2 and 11.3 were performed in the same manner
as those of Fig. 11.1). While discrimination continues to have its usual effect,
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the role of segregation is more complex. As the first panel of Fig. 11.2 shows,
strong segregation effects substantially increase the rate of transition from opa -
stratification regime (e.g., male dominant) to the other (e.g., female dominant), "
where segregation is strong, there is an almost 1mmed1ate phase transition at
a = 0 from one regime to the other. A mixing regime (where the wage gap
is of small magnitude) continues to exist near the origin, and enlarges slightly
for B > 0. This confirms the intuition that supra-random mixing does inhibj;
convergence to a highly stratified regime, albeit weakly. The explanation for
both effects lies in the way in which segregation effects alter the allocation of
men and women to occupational categories. When segregation is strong (8 « 0),
each category tends to be occupied exclusively by members of a single gender;
in the presence of even a weak discrimination effect, high-ranking categories
will then tend to become the exclusive province of the dominant group, while
the subordinated group will be similarly concentrated almost exclusively into
the low-ranking blocks. By contrast, when 3> 0, it becomes nearly impossible
for any occupational category to be gender exclusive. Thus, there must he
some members of the subordinate group in the high-ranking blocks, and some
members of the dominant group in the low-ranking blocks. This makes extreme
stratification much more difficult to achieve, hence the inhibitory effect on
the wage gap. Interestingly, this same phenomenon implies a non-monotonic
interaction with discrimination on the variance of the wage gap. When <« 0Oand
o =~ 0, occupational categories are highly segregated with no general tendency
for any particular category to be dominated by males or females. If, by chance,
it happens that the males wind up with the high-end categories, then the wage
gap will be large (and positive); these categories could be as easily dominated
by females, however, in which case the gap will be negative but also of large
magnitude. Thus, segregation in the absence of discrimination should act to.
greatly increase the variance of the wage gap, without impacting the mean. On
the other hand, we have already seen that high segregation in the presence of
discrimination results in a highly stratified regime, in which variance should
be low. This divergence should disappear in the supra-random mixing case,
since the net impact of this effect is to push the job allocation process toward
uniformity. As it happens, we see all three of these phenomena in the second
panel of Fig. 11.2, which shows the variance of the wage gap across the parameter
space. Compared with the B = 0 baseline, <« 0, & & 0 shows highly elevated
" variance, falling almost immediately to low levels as « increases in magnitude.
By contrast, variance is much less sensitive to & where f§ 3> 0, tending to remain
moderate even at more extreme o values.

Just as one can consider the effect of homogeneity or heterogeneity with
respect to persons within the same occupation, one can also (via vy effects)
consider forces toward or away from heterogeneity with respect to couples.
Mechanisms such as social influence (Freidkin 1998), homophily on unobserved
characteristics (McPherson et al. 2001), and diffusion of opportunity for social
ties (Calvo-Armengol and Jackson 2004) can potentially lead to a net tendency
toward similarity of within-couple wage rates. By contrast, incentives for
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specialization in home versus market production (Becker 1991), normative
ressures for intensive parenting (Jones and Brayfield 1997), and the like can
lead to high levels of intra-couple wage heterogeneity. To explore these effects,
we replace the 8 effect used to model segregation in Fig. 11.2 with a y effect for
intra-couple wage heterogeneity, and simulate draws from the location system
model. As shown in Fig. 11.3, the results are striking: while positive intra-couple
heterogeneity effects slightly encourage convergence to a stratified regime, even
modestly negative values dampen stratification altogether. How can this be? The
secret lies in the observation that the absolute value of the male/female wage
gap must be less than or equal to the mean of the absolute intra-couple wage
differences. As d’result, intra-couple wage heterogeneity acts as a “throttle” on
the wage gap: force it to diminish (by setting y < 0), and stratification must
likewise decrease. This effect similarly reduces the variance of the wage gap
(see Fig. 11.3, panel 2), resulting in a “homogeneous mixing regime” in which
stratification is uniformly minimal. By contrast, high intra-couple heterogeneity
requires one member of each couple to have a much higher wage rank than the
other; like segregation, this inflates variance where discrimination is low, but
reduces it where discrimination is high. Between, there exists a thin band of
entropic mixing, where the various forces essentially cancel each other out.
While these simulations only hint at what is possible when using the location
system to model occupational stratification, the effects they suggest are never-
theless interesting and non-obvious. Particularly striking is the relative power
of couple-level heterogeneity effects in suppressing labor market discrimination,
a result which suggests a stronger connection between processes such as mate
selection and marital bargaining with macro-level stratification than might be
supposed. The exacerbation of discrimination effects by discrimination is less
surprising, but no less important, along with the somewhat weaker inhibiting
effect of active desegregation. These phenomena highlight the importance of

capturing dependencies among both individuals and among jobs when modeling

stratification in labor market settings. Such effects can be readily parameterized
using the location system, thereby facilitating a more complete theoretical and
treatment of wage inequality within the occupational system.

11.5.2. Settlement Patterns and Residential Segregation

Another problem of long-standing interest to social scientists in many fields
has been the role of segregation within residential settlement processes
(Schelling 1969; Bourne 1981; Massey and Denton 1992; Zhang 2004). Here, we
illustrate the use of the location model on a stylized settlement system involving

1,000 households (objects) allocated to regions on a uniform 20-by-20 spatial

grid (locations). Unlike the job allocation system described above, this system
places no occupancy constraints on each cell; however, “soft” constraints may
be implemented via density dependence effects. For purposes of demonstration,
each household is assigned a random “income” (drawn independently from a
log-normal distribution with parameters 10 and 1.5) and an “ethnicity” (drawn
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from two types, with 500 households belonging to each type). Households are
tied to one another via social ties, here modeled simply as a Bernoulli graph
with mean degree of 1.5. Regions, for their part, relate to one another via the;
spatial location. Here, we will make use of both Euclidean distances betweep
regional centroids and Queen’s contiguity (for purposes of segregation). Each
region is also assigned a location on a “rent” gradient, which scales with the

inverse square of centroid distance from the center of the grid.

With these building blocks, a2 number of mechanisms can be explored. SeVeray
examples of configurations resulting from such mechanisms are shown iy
Fig. 11.4. Each panel shows the 400 regions comprising the location set, with
household positions indicated by circles. (Within-cell positions are jittered for
clarity.) Household ethnicity is indicated by color, and network ties are shown via
edges. While each configuration corresponds to a single draw from the location
model, a burn-in sample of 100,000 draws was taken (and discarded) prior to
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sampling. Configurations shown here are typical of model behavior for these
covariates and parameter values.

The panels of Fig. 11.4 nicely illustrate a number of model behaviors. In the
first (upper left) panel, a model has been fit with an attraction parameter based on
an interaction between rent level and household income (@ == 0.0001), balanced
by a negative density dependence parameter 6 = —0.01. (Density is modeled by
an alignment statistic between an identity matrix (for locations) and a matrix of
ones (for objects); the associated product moment is the sum of squared location
occupancies.) Although the former effect tends to pull all households toward the
center of the crrid the density avoidance effect tends to prevent “clumping.” As
a result, h10h—1ncome households are preferentially clustered in high-rent areas,
with lower-income households displaced to outlying areas. Note that without
segregation or propinquity effects, neither ethnic nor social clustering are present;
this would not be the case if ties were formed homophilously, and/or if ethnicity
was correlated with income. Clustering can also be induced directly, of course,
as is shown in the upper right panel of Fig. 11.4. Here, we have added an
object homogeneity effect for ethnicity through Queen’s contiguity of regions
(B = —0.5), which tends to allocate households to regions so as to reduce local
heterogeneity. As can be seen, this induces strong ethnic clustering within the
location system; while high-income households are still preferentially attracted to
high-rent areas, this sorting is not strong enough to overcome segregation effects.
Another interesting feature of the resulting configurations is the nearly empty
“puffer” territory which lies between ethnic clusters. These buffer regions arise
as a side-effect of the contiguity rule, which tends to discourage direct contact
between clusters. As this suggests, the neighborhood over which segregation
effects operate can have a substantial impact on the nature of the clustering
which results. This would seem to indicate an important direction for empirical
research.

A rather different sort of clustering is generated by adding a propinquity effect
to the original attraction and density model. Propinquity is here implemented
as an alignment effect between the inter-household network and the Euclidean
distance between household locations (6 = —1). As one might anticipate, the
primary effect of propinquity (shown in the lower-left panel of Fig. 11.4) is to
pull members of the giant component together. Since many of these members
also happen to be strongly attracted to high-rent regions, the met effect is
greater population density in the area immediately surrounding the urban core.
Another interesting effect, however, involves households on the periphery: since
propinquity draws socially connected households into the core, peripheral house-
holds are disproportionately those with few ties and/or which belong to smaller
components. The model thus predicts an association between social isolation
and geographical isolation. Ironically, this situation is somewhat attenuated by
the reintroduction of a residential segregation effect (lower-right panel). While
there is still a tendency for social isolates to be forced into the geographical
periphery, the consolidation of ethnic clusters limits this somewhat. Because
ties are uncorrelated with ethnicity, propinquity also acts to break the settlement
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pattern into somewhat smaller, “band-like” clusters with interethnic ties Spanning
the inter-cluster buffer zones. (One would not expect to observe this effect i,
most empirical settings, however, due to the strong ethnic homophily of mog
social ties (McPherson et al. 2001).) ,
Broader information on the behavior of the settlement model can be obtaineg ©0® .0 o
by simulating draws from across the parameter space, as with Figs. 11.1-113.
(Simulations were performed in the same manner as those for the occupation
model, but were thinned from 300,000 rather than 200,000 draws per chain))
Figure 11.5 shows the mean local heterogeneity statistic (t¥) for ethnicity by
Queen’s contiguity as a function of segregation () and propinquity (&) param
eters. Bach circle within the two panels reflects the mean or variance of the
realized heterogeneity statistic (respectively), with circle shading indicating the
corresponding mean or variance in the realized alignment statistic (t%). Ag
the figure indicates, a clear phase transition occurs at 8 =0, as one tran
tions sharply from a segregated, low-variance regime to a heterogeneous, high-
variance regime. Interestingly, the realized level of propinquity varies greatly
only in the upper left-hand quadrant of the parameter space (an environment
combining segregative tendencies with high & values). Propinquity has no
substantial effect on heterogeneity in this case, demonstrating that there exist
some structural effects which are only weakly coupled. ;
Unlike propinquity, population density effects interact much more strongly
with segregation. Figure 11.6 shows mean/variance in the realized population
density (circle area) and heterogeneity (circle shading) statistics as a function
of their associated parameters. Unsurprisingly, pressure toward density quickly
tips the system into a highly concentrated population regime; somewhat more
surprisingly, however, the variance of this state is much higher than the diffuse
regime. This reflects the fact that pressures toward population density tend to lead
to a rapid collapse into local clusters, which change only unevenly across draws:
thus, there is rather more variability here in realized density than there is in
the case where households are forced to spread thinly across the landscape. The
low-density regime also tends to support high levels of homogeneity, while very
high densities tend to inhibit it somewhat; interestingly, however, this inhibition
appears to occur (in many parts of the parameter space) via a series of sudden
phase transitions, rather than a gradual shift (the exception being the lower right-
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band quadrant, in which heterogeneity pressure gradually overcomes resistance
toward concentration). Thus, pressure toward or away from segregation can
enhance or inhibit the concentration of population into small areas, and vice
versa, and this process can occur very suddenly when on the border between
regimes.

As Schelling long ago noted, even mild tendencies toward local segregation
can result in residential segregation at larger scales (Schelling 1969). While the
location system model certainly bears this out, the model also suggests that
factors such as population density and inter-household ties can interact with
segregation in non-trivial ways. Using the location system framework, such
interactions are easy to examine, and the strength of the relevant parameters can
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e readily estimated from census or other data sources. It is also a simple matter
1o introduce objects of other types (e.g., firms) which relate to households and to
 each other/in distinct ways (as represented through additional covariates). In an
era in which geographical data is increasingly available, such capabilities create
the opportunity for numerous lines of research.

11.6. Conclusions

In the foregoing, we have used a stochastic modeling framework (the generalized
Jocatiort system) to illustrate the applicability of physical models to a broad class
of social systems. While the location system has antecedents in many fields
(including spatial statistics and social networks), its strong formal connection
with statistical mechanics is of particular relevance for researchers in areas
such as constructal theory, who seek to identify productive ways of integrating
physical principles into the social sciences. The applicability of the location
system to problems such as occupational stratification and residential settlement
patterns highlights not only the versatility of the model, but also the extent
to which many apparently disparate social phenomena have strong underlying
commonalities. Recognizing and exploiting those commonalities may allow us
not only to cross-apply findings between the physical and social sciences, but
also to leverage knowledge across different problems within the social sciences
themselves.

Acknowledgment The author would like to thank Mark Handcock, Miruna
Petrescu-Prahova, John Skvoretz, Miller McPherson, Garry Robins, and Pip
Pattison for their comments regarding this work. This research was supported in
part by NIH award 5 R01 DA(012831-05.

References

Barndorff-Nielsen, O. (1978) Information and Exponential Families in Statistical Theory.
Wiley, New York.

Becker, G. S. (1991) A Treatise on the Family, expanded edition, Harvard University
Press, Cambridge, MA.

Bejan, A. (1997) Advanced Engineering Thermodynamics, second edition, Wiley,
New York.

Bejan, A. (2000) Shape and Structure: from Engineering to Nature Cambridge University
Press, Cambridge, UK.

Bejan, A. and Lorente, S. (2004) The constructal law and the thermodynamics of flow
systems with configuration. Int. J. Heat Mass Transfer 47, 3203-3214.

Bejan, A. and Marden, J. H. (2006) Unifying constructal theory for scale effects in
running, swimming and flying. J. Exp. Biol. 209, 238-248.

Besag, J. (1974) Spatial interaction and the statistical analysis of lattice systems, J. Royal
Statistical Society, Series B 36, 192-236.

Besag, J. (1975) Statistical analysis of non-lattice data, The Statistician 24, 179-195.
Bourne, L. (1981) The Geography of Housing Winston, New York.



222 Carter T. Butts - Statistical Mechanical Models for Social Systems 223

Brown, L. D. (1986) Fundamentals of Statistical Exponential Families, with Applicat;
in Statistical Decision Theory, Institute of Mathematical Statistics Hayward, CA.
Butts, C. T. (2006) Permutation models for relational data. Sociological Methodologj,
in press.
Calder, W. A. (1984) Size, Function, and Life History, Harvard University Press
Cambridge, MA.
Calvo-Armengol, A. and Jackson, M. O. (2004) The effects of social networks
employment and inequality, American Economic Review 94, 426-454.
Cliff, A. D. and Otd, J. K. (1973) Spatial Autocorrelation, Pion, London. .
Coleman, 1. S. (1964) Introduction to Mathematical Sociology, Free Press, New York
Comte, A. (1854) The Positive Philosophy, volume 2. Appleton New York.
Crouch, B., Wasserman, S. and Trachtenburg, F. (1998) Markov chain Monte Cag,
maximum likelihood estimation for p* social network models, Paper presented at the
XVIII Int. Sunbelt Social Network Conference, Sitges, Spain.
Efron, B. (1975) Defining the curvature of a statistical problem (with application to
second order efficiency) (with Discussion), Annals of Statistics 3, 11891242,
Fararo, T. J. (1984) Critique and comment: catastrophe analysis of the Simon-Homan
model, Behavioral Science 29, 212-216. :
Frank, O. and Strauss, D. (1986) Markov graphs, J. American Statistical Association 81
832-842. ‘
Freidkin, N. (1998) A Structural Theory of Social Influence, Cambridge University Pres
Cambridge, UK.
Gamerman, D. (1997) Markov Chain Monte Carlo: Stochastic Simulation for Bayesian
Inference, Chapman and Hall, London. -
Gelman, A., Carlin, I. B., Stern, H. S. and Rubin, D. B. (1995) Bayesian Data Analysis,
Chapman and Hall, London.
Geyer, C. J. and Thompson, E. A. (1992) Constrained Monte Carlo maximum likelihood
calculations (with Discussion), J. Royal Statistical Society, Series C 54, 657699,
Gilks, W. R., Richardson, S. and Spiegelhalter, D. I. (eds.) (1996) Markov Chain Monte
Carlo in Practice. Chapman and Hall, London.
Holland, P. W. and Leinhardt. S. (1981) An Exponential Family of Probability Distribu-
tions for Directed Graphs (with Discussion), J. American Statistical Association 76,
33-50.
Hubert, L. J. (1987) Assignment Methods in Combinatorial Data Analysis, Marcel Dekker,
New York. ;
Hunter, D. R. and Handcock, M. S. (2006) Inference in curved exponential family models
for networks, J. Computational and Graphical Statistics forthcoming.
Johansen, S. (1979) Introduction to the Theory of Regular Exponential Families,
University of Copenhagen, Copenhagen. i
Jones, R. and Brayfield, A. (1997) Life’s greatest joy?: European attitudes toward the
centrality of children, Social Forces 75, 1239-1269. '
Kittel, C. and Kroemer, H. (1980) Thermal Physics, second edition, Freeman, New York.
Massey, D. S. and Denton, N. A. (1992) American Apartheid: Segregation and the Making
of the Underclass Harvard University Press, Cambridge, MA.
Mayhew, B. H. (1984a) Baseline models of sociological phenomena,. J. Mathematical
Sociology 9, 259-281.
Mayhew, B. H. (1984b) Chance and necessity in sociological theory, J. Mathematical
Sociology 9, 305-339.

 Mayhew, B- H., McPherson, J. M., Rotolo, M. and Smith-Lovin, L. (1995) Sex and race
. pomogeneity in naturally occurring groups, Social Forces ’74, 15-52. ‘
McPherson, J. M., Snfith-Lovin, L. and Cook, J. M. (2001) Birds of a feather: homophily
*in social networks, Annual Review of Sociology 27, 415-444. .
pattison, P- and Robins, G. (2002) Neighborhood-based models for social networks,
Sociological Methodology 32, 301-337. o . .
pattison, P. and Wasserman, S. (1999) Logit models and logistic 'regresswns for social
petworks, II. Multivariate relations, British J. Mathematical Statistical Psychology 52,
' 169-193.
, Prelsi,gxé'. H., Teukolsky, S. A., Vetterling, W. T. and P:lannery, B: P. (1992) I\{umerical
Recipes: The Art of Scientific Computing, second edition, Cambridge University Press,
Cambridge, UK. ’
Quetelet, A. (1835) Sur L’Homme et Sur Developpement de Ses Facultes, ou Essai de
Physique Sociale, Bachelier Paris. ' . '
Reis, A. H. and Bejan, A. (2006) Constructal theory of global circulation and climate,
Int. J. Heat Mass Transfer 49, 1857-1875. N '
Robins, G., Pattison, P. and Wasserman, S. (1999) Logit models and logistic regressions
for social networks, I Valued relations, Psychometrika 64, 371-394.
Schelling, T. C. (1969) Models of segregation, American Economic Review593 483-493.
Snijders, T. A. B. (2002) Markov chain Monte Carlo estimation of expoqennal random
graph models, J. Social Structure 3,http://www.cmu.edu/joss/content/articles/volume3/
Snijders.pdf '
Strauss, D. (1986) On a general class of models for interaction, SIAM Revzgw 28, 513-527.
Strauss, D. and Tkeda, M. (1990) Pseudolikelihood estimation for social networks, J.
American Statistical Association 85, 204-212.
Swendsen, R. G. and Wang, I. S. (1987) Non-universal Critical dynamics in Monte Carlo
simulation, Physical Review Letters 58, 86-88. -
Wasserman, S. and Pattison, P. (1996) Logit models and logistic regressions for social
petworks: I. An introduction to Markov graphs and p*, Psychometrika 60, 401-426.
White, H. C. (1970) Chains of Opportunity: System Models of Mobility in Organizations,
Harvard University Press, Cambridge, MA. - .
Whittington, S. G. (2000) MCMC methods in statistical mechanics: Avoiding quas-
ergodic problems. In Monte Carlo Methods, edited by N. Madras, vol. 26 of.erlds
Institute Communications, pp. 131~141, American Mathematical Society. Providence,
RIL
Zhang, J. (2004) A dynamic model of residential segregation, J. Mathematical Sociology
28, 147-170.
Zipf, G. K. (1949) Human Behavior and the Principle of Least Effort, Hafner, New York.




