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MODELS FOR GENERALIZED
LOCATION SYSTEMS

Carter T. Butts*

A formal framework is introduced for a general class of assignment
systems that can be used to characterize a range of social phenom-
ena. An exponential family of distributions is developed for mod-
eling such systems, allowing for the incorporation of both attribu-
tional and relational covariates. Methods are shown for simulation
and inference using the location system model. Two illustrative ap-
plications (occupational stratification and residential settlement
patterns) are presented, and simulation is employed to show the
behavior of the location system model in each case; a third appli-
cation, involving occupancy of positions within an organization, is
used to demonstrate inference for the location system. By lever-
aging established results in the fields of social network analysis,
spatial statistics, and statistical mechanics, it is argued that so-
ciologists can model complex social systems without sacrificing
inferential tractability.

1. INTRODUCTION

Social systems take many forms and may be studied at multiple lev-
els. Despite more than a century of effort by sociologists to subsume
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this diversity under a single unifying framework—the grand theoreti-
cal narratives of Spencer (1896), Sorokin (1957), Parsons (1951), and
Coleman (1990) being classic examples—the goal of theoretical uni-
fication continues to prove elusive. While the possibility—or even the
desirability—of a unified framework for studying social phenomena re-
mains an open question, theorists such as Fararo and Skvoretz (1987)
and Fararo (1989) persuasively argue that more modest progress can
be made by identifying and exploiting connections among particular
classes of social systems. Where common features are present, it may
be possible to identify model families that are broad enough to permit
cross-fertilization of findings while remaining narrow enough to be de-
ployable in practical settings. This “middle range” approach (Merton
1957) is as much a methodological as it is a theoretical endeavor: to be of
scientific use, even a limited unified framework requires a common set
of formal representations, deductive methods, and measurement tech-
niques. An important challenge, then, is to identify classes of social
phenomena that admit such methodological and conceptual unity and
to construct formal systems to facilitate their measurement and analysis.

One promising candidate for a more unified treatment is the
broad class of social systems that involve the arrangement of social enti-
ties (here referred to generically as “objects”) with respect to “locations”
of one sort or another. The notions of “object” and “location” employed
here are intended to be quite general— for example, encompassing in-
dividuals, households, and organizations in the former case and social,
economic, or physical positions in the latter. For instance, individuals
may hold particular jobs in a market economy (Kelso and Crawford
1982; Sattinger 1993), households may occupy particular housing units
(Massey and Denton 1993; Benenson 2004), and firms may elect to
site their facilities in particular locales (Sweeney and Feser 2003; Feser,
Sweeney, and Renski 2005). At a more abstract level, we may even think
of relational structures as involving the allocation of individual enti-
ties to structural positions (Lorrain and White 1971; Doreian, Batagelj,
and Ferlioj 2005), and discrete choice behavior as individuals’ “allo-
cation” of preference to options from a choice set (Luce 1959). What
these otherwise disparate systems have in common is that they can be
represented (to a first approximation, at least) in terms of a discrete set
of objects, a discrete set of locations, and a mapping that assigns the
elements of the first set to elements of the second set. Although the
location of one object may be independent of the locations of others
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in the system, this is not generally the case: in many systems, the ob-
jects’ location assignments depend on each other in complex ways. In
the case of residential settlement, for instance, local tendencies toward
homophily or xenophobia affect households’ selection of housing units,
leading in many cases to racial and/or ethnic segregation at large scales
(Schelling 1969; Sakoda 1971; Fossett 2006). Likewise, compositional
variations in the populations of jobs and job seekers interact to affect
the entry of younger workers into high-ranking positions and can com-
bine with discrimination by race or gender to maintain robust patterns
of stratification within and across organizations (see Stewman [1988]
for a review). Capturing the behavior of these systems thus requires
modeling not only baseline tendencies for certain objects to occupy cer-
tain locations but also the impact of interdependencies and occupancy
constraints.

The focus of this paper is the development of a general frame-
work for modeling and analysis of systems that can be specified in terms
of the arrangement of a finite set of objects with respect to a finite set
of locations. As motivated by the examples mentioned above, the be-
havior of these “generalized location systems” (as we shall call them)
may involve dependencies among objects and/or locations as well as
constraints on which (and how many) objects can occupy particular
locations at any given point in time. To deal with this challenge, we
employ a core formalism (the discrete exponential family) that allows
us to leverage the large literature on the stochastic modeling of systems
with nontrivial dependence structures. This formalism also allows us to
construct models that are applicable across a wide range of substantive
contexts; that scale well to large social systems; that are readily simu-
lated; that are specifiable in terms of directly measurable properties; and
that support likelihood-based inference using (fairly) standard meth-
ods. Although framed holistically in terms of system-level behavior (an
approach advocated by Mayhew [1980, 1981], among others), models
generated under this framework can also be interpreted as arising from
certain types of microlevel processes; where the appropriate assump-
tions are met, therefore, model parameters may be understood in terms
of object-level behavior. While procedures for parametrization and effi-
cient simulation of models for generalized location systems occupy the
bulk of what is treated here, basic methods for likelihood-based infer-
ence on location system parameters from cross-sectional data will also
be presented. These methods provide a direct mechanism for empirical
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evaluation of competing theoretical claims and are hence an impor-
tant benefit of this approach. Finally, three illustrative examples will be
shown, which demonstrate how processes of occupational stratification
and residential settlement can be modeled within the location system
framework.

1.1. Modeling Location Systems: Some Prior Approaches

As we might expect from the substantive diversity of generalized lo-
cation systems, a number of distinct modeling approaches have been
suggested for location systems in particular empirical contexts. Most
commonly, researchers have modeled specific properties of occupied po-
sitions (or sets thereof) without attempting to capture the behavior of
the system as a whole. Much of the literature on income and educational
attainment is in this vein (e.g., Beck, Horan, and Tolbert 1978; Budig
and England 2001; Joy 2003; Huffman and Cohen 2004), as is much of
the work on residential segregation (Tauber and Tauber 1965; Massey
and Denton 1993) and the compositional properties of neighborhoods
or other regions (Galster 1982; Frey and Farley 1994). A rather different
approach may be found in the family of stochastic choice models (Luce
1959; McFadden 1973), which in our terms model the allocation of a
decision (object) to a set of possible options (locations). In addition to
its applications in economic contexts (Loehman and De 1982; Corstjens
and Gautschi 1983; Eckstein and Wolpin 1989), this approach is widely
employed in geography and transportation engineering to model route
selection (Bovy and Stern 1990; Oppenheim 1995). Common to all of
these approaches are severe limits on the types of dependence among sys-
tem elements that can be modeled. Regression-based approaches (e.g.,
income attainment models) do not generally treat the assignment pro-
cess directly and they treat observations as independent conditional
on object (and sometimes location) covariates. Spatial autocorrelation
models (Anselin 1988) may be employed to capture certain types of de-
pendence but still neglect factors such as occupancy constraints. Stan-
dard stochastic choice models, on the other hand, treat decisions as
independent while accounting for the composition of the location set
(though not limits on total occupancy). A much richer range of depen-
dence can be captured by permutation or assignment models (Butts, this
volume, building on the work of Hubert [1987]), although these are lim-
ited to cases where the object/location mapping is 1:1. We shall have
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more to say about this family later, since it can be viewed as a special
case of the models studied here.

In addition to these statistically oriented families, various dy-
namic and agent-based approaches have also been used to study particu-
lar location systems. Some of the best known of these include Schelling’s
(1969) and Sakoda’s (1971) models of residential settlement, which have
their modern incarnation in models such as those of Benenson (2004)
and Fossett (2006). White’s (1970) classic treatise on “vacancy chains”
can also be seen as proposing a number of dynamic models for location
systems arising in organizational contexts, and it has spawned a large
literature of its own (see Stewman [1988] for a review). A closely re-
lated literature in economics deals with matching models, which capture
strategic interactions in contexts (e.g., labor markets) in which trans-
actions involve discrete matches between traders (Shapley and Shubik
1971; Kelso and Crawford 1982; Roth and Sotomayor 1990). Although
most research on matching models has focused on either game-theoretic
solutions or large-population behavior in the deterministic limit, recent
work by Zhang (2004) employs a boundedly rational stochastic choice
model that recasts the Schelling model in terms of a family of potential
games (Monderer and Shapley 1996; Young 1998). Such games have the
property that the differences in any actor’s utilities for unilateral strat-
egy changes can be expressed as differences in a real-valued function
that depends only on the change being considered and the strategies
being employed by other actors (and not, for example, on which actor
is involved). Potential games also have the appealing property of hav-
ing well-defined equilibrium dynamics under stochastic choice (Young,
1998), which Zhang employs to deduce long-run system behavior given
a particular family of utility functions. Although Zhang’s (2004) dis-
cussion is limited to a specific case, the model in question belongs to a
much larger family of stochastic processes that will be presented here;
thus, it is possible to carry out simulation and inference for the Zhang
model (and extensions of it) using the methods discussed in this paper.

Overall, then, prior efforts to understand location systems have
generally been domain-specific and have broadly represented a trade-
off between models with well-understood inferential properties (e.g.,
regression models) and models that capture more complex interactions
among elements (e.g., agent-based models). Although specialized mod-
els have merit in many situations, there is also value in pursuing a more
unified approach; likewise, it is scientifically desirable to have standard
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methods for both deduction and inference within the same framework.
A successful example of this unifying strategy can be found in the field
of social network analysis, where a common formalism (the discrete ex-
ponential family) has been used to model a wide (and growing) range of
structural phenomena. Because this approach is closely related to that
described here, we briefly consider it before continuing to an in-depth
discussion of the generalized location system framework.

1.2. Statistical Models for Dependent Systems:
The Case of Network Analysis

Social networks pose substantial modeling challenges, due to the in-
terdependence of their component parts. Formally, we may think of a
network as consisting of a set of vertices (representing individual actors)
that are connected by edges (representing ties between actors); such a
structure is generically referred to as a graph. While the simplest models
of network structure assume all ties to be independent (e.g., the famous
random graph models of Erdös and Rényi [1960]), this is at best a loose
approximation. Typical social networks display properties such as reci-
procity or asymmetry (in which an edge from i to j depends on the state
of the corresponding (j, i) edge), transitivity bias (in which the existence
of an (i, j) edge is affected by the existence of a path from i to j through
some intermediary, k), and even complex biases such as the avoidance
of odd-length cycles (e.g., as in predominantly heterosexual networks
([Bearman et al. 2004]) or balanced negative-valence relations [Harary
1953]). Such properties may arise as an artifact of unobserved dyadic
effects (such as homophily [McPherson, Smith-Lovin, and Cook 2001];
see Hoff, Raftery, and Handcock [2002] for a statistical discussion), or
from intrinsic dynamics (e.g., see Carley [1991]; Hummon and Doreian
[2003]). Regardless of how they occur, however, these properties reflect
potentially complex patterns of dependence among edges and advances
in network modeling have thus required researchers to cope with this
problem.

Over the past quarter-century, a great deal of progress has
been made within the social network field toward developing prac-
tical models for social systems with complex dependence structures.
This work began in earnest with the log-linear models of Holland and
Leinhardt (1981) and Fienberg and Wasserman (1981), which were
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extended by various researchers (e.g., Fienberg, Meyer, and Wasser-
man 1985; Holland, Laskey, and Leinhardt 1983) to cover more com-
plex cases. In a series of important developments (starting with the
foundational work of Frank and Strauss [1986]), this approach was
generalized to incorporate processes with at first local and then gen-
eral dependence among edges (Strauss and Ikeda 1990; Wasserman and
Pattison 1996; Pattison and Wasserman 1999; Robins, Pattison, and
Wasserman, 1999). What united these various efforts was the use of
discrete exponential families as a formalism for representing general
classes of distributions on graphs. Given a random graph G drawn from
a finite set of possible graphs G, we may write the distribution of G as
Pr (G = g) ∝ exp (θT t(g)), where θ is a vector of real-valued parameters
and t is a vector of real-valued functions on G. t may be chosen with
very few constraints, although most common models involve counts of
structural features such as mutual dyads, star formations, or triangles
(some of the technical reasons for this are sketched in Wasserman and
Robins [2005]). Since the log-probability of a graph is proportional to
the weighted sum of its statistics, t may be intuitively understood as de-
scribing structural features that are either enhanced (where θ is positive)
or suppressed (where θ is negative) by the model. Models represented
in this way are known as exponential random graph (ERG) or p∗ mod-
els, although this is more properly understood as a description of their
parametrization rather than their content; indeed, any fixed distribution
on a finite G can be written in this manner (albeit not always parsimo-
niously). By providing a general framework for the parametrization of
graph distributions with nontrivial dependence (via choice of t) and via
its associated inferential theory (Barndorff-Nielsen 1978; Brown 1986),
the discrete exponential family formalism has been central to progress
in the network modeling area.

Recent work has expanded on these innovations with improved
inferential strategies (Crouch, Wasserman, and Trachtenburg 1998;
Snijders 2002; Hunter and Handcock 2006), new parameterizations for
structural effects (Snijders et al. 2006), and an expanded understand-
ing of the models themselves (Handcock 2003b; Robins, Pattison, and
Woolcock, 2005). While these models have often been couched in purely
methodological terms, it has become increasingly apparent that they
can be employed to capture theoretically relevant local influences on
structure formation (Robins et al. 2005; Robins and Pattison 2005), as
well as (in some cases) mechanisms of structural evolution (Robins and
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Pattison 2001). Although much of this work is still in a fairly early stage
of development, the foundations have arguably been laid for a minor
revolution in structural analysis.

While time will tell if this promise is realized, the successes that
have so far been obtained underscore the aforementioned value of syn-
thesis in scientific research. Rather than arising in isolation, they have
resulted from cross-application of work in fields as diverse as spatial
statistics (e.g., Besag 1974, 1975) and statistical physics (Strauss 1986;
Swendsen and Wang 1987), as well as innovations in computing technol-
ogy and simulation methods (Geyer and Thompson 1992; Gamerman
1997). Although frequently motivated by substantive concerns (e.g., the
desire to model balance-theoretic influences [Heider 1958]), modelers
have also attempted to work with general formalisms that can be de-
ployed on networks arising within many different substantive contexts.
By drawing on results obtained by researchers studying structurally sim-
ilar problems in other substantive areas, then, network researchers have
been able to greatly accelerate development in their own field.

Cross-application of concepts and methods has led to great
strides in network analysis, but there is more that can be done. As
promising as the developments cited above have been, few if any at-
tempts have been made to extend them to problems other than network
formation and diffusion. It has already been noted that processes such
as stratification, settlement patterns, migration, firm siting, and occu-
pational segregation pose similar challenges of complex dependence,
but they are currently studied through a variety of (generally incom-
patible) modeling frameworks. A more generic approach would facili-
tate the cross-application of findings and techniques, thereby laying the
groundwork for cumulative theoretical development and, ultimately,
unification (Fararo and Skvoretz 1987; Fararo 1989). As we shall see
in Section 3.1, the tools for creating such a unifying framework can be
found in the same modeling techniques now being employed for social
networks; this paper is intended as a first step in this direction.

1.3. A Brief Comment on Notation

We here outline some general notation, which will be used in the material
that follows. A graph, G, is defined as G = (V, E), where V is a set of
vertices and E is a set of edges on V . When applied to sets, | · | represents
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cardinality; thus |V | is the number of vertices (or order) of G. In some
cases (particularly when dealing with valued graphs), it will be useful to
represent graphs in adjacency matrix form, where the adjacency matrix
X for graph G is defined as a |V| × |V| matrix such that Xi j is the value
of the (i, j) edge in G. By convention, Xi j = 0 if G contains no (i, j)
edge. A tuple of graphs (G 1, . . . , Gn) on common vertex set V may be
similarly represented by a n × |V| × |V| adjacency array, X, such that
Xi ·· is the adjacency matrix for Gi .

When referring to a random variable, X , we denote the proba-
bility of a particular event x by Pr (X = x). More generically, Pr (X)
refers to the probability mass function of X (where X is discrete). Ex-
pectation is denoted by the operator E, with subscripts used to designate
conditioning where necessary. Thus, the parametric pmf Pr (X |θ ) leads
to the corresponding expectation Eθ (X). (Likewise for variance, written
Var θ (X).) When discussing sequences of realizations of a random vari-
able X , parenthetical superscript notation is used to designate particular
draws—for example, (x(1), . . . , x(n)).

On occasion, some specialized vector notation will also be em-
ployed. For vector x, x−i refers to all elements of x other than the ith.
Thus, Pr (X = x | X−i = x−i ) refers to the probability that random vector
X is equal to x, conditional on the non-ith values of X being equal to
x−i . In addition to the above, we will also at times need to refer to a
vector for which specific values have been replaced (all others remaining
unchanged). To this end, the expression i, j x is used to denote a vector
whose ith element has been fixed to j and whose other elements are
equal to x.

2. GENERALIZED LOCATION SYSTEMS

Our focus here is on what we shall call generalized location systems,
which represent the allocation of arbitrary entities (e.g., persons, ob-
jects, organizations) to “locations” (e.g., physical regions, jobs, social
roles). While our intent is to maintain a high level of generality, we
will limit ourselves to systems for which both entities and locations are
countable and discrete and for which it is meaningful to treat the prop-
erties of entities and locations as relatively stable (at least for purposes
of analysis). Relaxation of these constraints is possible but will not be
pursued here; as will be shown, the present framework still allows for a
great deal of flexibility.
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We begin our development by assuming a system that consists
of n identifiable objects, O = (o1, . . . , on), each of which may reside in
exactly one of m identifiable locations, L= (l 1, . . . , l m). The current state
of this system is given by a configuration vector, � ∈ {1, . . . , m}n, which
is defined such that �i = j iff oi resides at location l j . The set of all such
configuration vectors that are realizable is said to be the set of accessible
configurations and is denoted C. One very important parametrization
of C with which we will deal is in terms of occupancy constraints. We
define the occupancy function of a location system as

P(x, �) =
n∑

i=1

I(�i = x), (1)

where I is the standard indicator function. The vectors of maximum and
minimum occupancies for a given location system are composed of the
minimum/maximum values of the occupancy function for each state
under C (respectively). That is, we require that P−

i ≤ P(i , �) ≤ P+
i for

all i ∈ 1, . . . , m, � ∈ C, where P−, P+ are the minimum and maximum
occupancy vectors. If P−

i = P+
i = 1 ∀ i ∈ 1, . . . , m, then it follows

that � is a permutation vector on 1, . . . , n, in which case we must have
m = n for non-empty C. This is an important special case, particularly
in organizational contexts (White 1970). By contrast, it is frequently the
case in geographical contexts (e.g., settlement) that P−

i = 0 and P+
i > n

∀ i ∈ 1, . . . , m, in which case occupancy is effectively unconstrained.
In addition to configurations and labels, objects and locations

typically possess other properties of scientific interest. We refer to these
as features, with F O being the set of object features and F L being the
set of location features. While we do not (initially) place constraints
on the feature sets, it is worth highlighting two feature types that are
of special interest. Feature vectors provide ways of assigning numeri-
cal values to individual objects or locations—for example, age, average
rent level, or wage rate. Adjacency matrices can also serve as important
features, encoding dyadic relationships among objects or locations. Ex-
amples of such relationships can include travel distance, marital ties,
or demographic similarity. Because relational features allow for cou-
pling of objects or locations, they play a central role in the modeling of
complex social processes (as we shall see).

To draw the above together, we define a generalized location sys-
tem by the tuple (L, O, C, FL, FO). The state of the system is given
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by � ∈ C, which will be of primary modeling interest. Various speci-
fications of C are possible, but particular emphasis is placed on oc-
cupancy constraints, which specify the range of populations that each
location can support. With these elements, it is possible to model a
wide range of social systems and it is to this problem that we now
turn.

3. MODELING LOCATION SYSTEMS

Although many approaches to location system modeling are possible,
we will here focus on models for the observation of configuration vec-
tors at arbitrary times. In this sense, our focus is on the stochastic equi-
librium behavior of the system: if we take a snapshot of a system at
any given instant, what is the probability of observing one configu-
ration rather than another? While this perspective can be expanded
upon, it nevertheless allows us to say a fair amount regarding system
behavior. In modeling state probabilities, it is also essential that the
models be constructed in such a way as to allow for inference from ex-
tant data; while this may seem to be a self-evident constraint, even
a brief perusal of the sociological literature reveals that this condi-
tion is often unsatisfied. Finally, it must be the case that the location
model be capable of capturing the sorts of complex dependencies that
are known to operate within large-scale social systems. These include
homogeneity effects, density dependence, homophily/propinquity, and
capacity constraints, in addition to more prosaic attraction/repulsion
mechanisms.

In this section, we provide a modeling framework that satisfies
these constraints. The core of this framework is a discrete exponential
family of distributions that is closely linked to related models employed
in spatial statistics, statistical mechanics, and social network analysis.
Although our focus will be on the modeling of location systems per
se, we frequently draw upon results from these fields. Our treatment
of the topic begins with the development of the general location system
model and proceeds to a specific family of submodels that incorporates a
range of substantively important effects in a reasonably simple fashion.
Some simple inferential properties of the location system are also dis-
cussed as well as methods for simulating draws from the location system
model.
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3.1. The General Model

We here define a stochastic model for the equilibrium state of a general-
ized location system. In particular, we assume that the system is ergodic
and—given a set of accessible configurations, C—the system will be
found to occupy any particular configuration, �, with some specified
probability.1 Our primary interest is in the modeling of these equilib-
rium probabilities, although some dynamic extensions are possible.

Given the above, we first define the set indicator function

IC(�) =
{

1 if � ∈ C

0 otherwise.
(2)

The equilibrium probability of observing a given configuration can then
be written as

Pr (S = �) = IC(�)
exp(P(�))∑

�′∈C

exp(P(�′))
, (3)

where S is the random state andP is a quantity called the social potential
(defined below). The sum

Z (P, C) =
∑
�′∈C

exp
(
P

(
�′)) (4)

is the normalizing factor for the location model and corresponds to the
partition function of statistical mechanics (Kittel and Kroemer 1980).
Clearly, equation (3) defines a discrete exponential family with support
on C and it is generic in the sense that any distribution on C can be writ-
ten in the form of equation (3). There are several benefits to working
within such a framework. First, as noted, the framework is complete
with respect to the underlying location system. Second, much is known
about models with the form of equation (3). We have already seen that a
parallel formalism (the ERG) is widely used to construct models of net-
works with complex dependence and the formalism is similarly common

1 If this assumption does not hold, the model may still be interpreted in
terms of the probability of a single observation arising from a static process with the
distribution of equation (3). For purposes of exposition, however, ergodicity (and
the equilibrium interpretation) will be assumed.
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in both physics (Kittel and Kroemer 1980) and mathematical statistics
(e.g., see Besag 1974, 1975; Barndorff-Nielsen 1978; Stoyan, Kendall,
and Mecke 1987). However, the most important property of the ex-
ponential family framework is perhaps the third: given an appropriate
parametrization of P , there are existing results that permit principled
inference from empirical data (Johansen 1979; Brown 1986). While its
deductive value is also important, the availability of viable inferential
tools is a major motivation for our approach; models that can capture
complex social processes are of little use if they cannot be evaluated on
readily available data.

While equation (3) can represent any distribution on C, its sci-
entific utility clearly lies in the specification of P . Intuitively, the social
potential for any given configuration is equal to its log-probability, up to
an additive constant. Thus, the location system is more likely to be found
in areas of high potential, and/or (in a dynamic context) to spend more
time in such states. While any number of forms forP could be proposed,
we begin with a constrained family that incorporates a number of fea-
tures of known substantive importance for a variety of social systems.
This form is introduced in the section that follows.

3.2. A Family of Social Potentials

As noted above, we seek a family of functions P : C �→ R such that
Pr (S = �) ∝ exp (P(�)). This family should incorporate as wide a range
of substantively meaningful effects as possible; since it is not reason-
able to expect effects to be identical in every situation, the family should
be parametrized so as to allow differential weighting of effects. Ideally,
the social potential family should also be easily computed and its struc-
ture easily interpreted. For our present purposes, these latter qualities
will guide our construction of P . It should be noted, however, that al-
ternative approaches are possible (such as the direct use of dependence
graphs [Besag 1974; Pattison and Robins 2002; Wasserman and Robins
2005]) and the potentials so generated may be deployed in the same
manner as those discussed here.

An obvious initial solution to this problem is to construct P
from a linear combination of sufficient statistics (i.e., deterministic func-
tions of �, FL and FO). Employing such a potential function within
equation (3) leads to a regular exponential family on C (Johansen 1979),
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which has a number of useful statistical implications. Of course, such
an approach also has the usual virtues of linear families (additivity of
effects, nesting, etc.) familiar to most social scientists. The canonical
ERG parametrization shown in Section 1.2 is of this form as well, al-
though some recent parameterizations employ nonlinear constraints
on the manner in which sufficient statistics are weighted (Hunter and
Handcock 2006; Snijders et al. 2006).

Even if a linear form is supposed, however, we are left with a more
important question: what statistics should be included in the social po-
tential? Obviously, these statistics must be parametrized as functions of
the location and object features. Since the impact of the social potential
is invariant up to an arbitrary additive constant, per equation (3), it fol-
lows that properties that are invariant over C—i.e., those that depend
only on aspects of the populations of objects or locations without re-
gard to the assignment of objects to locations—can be safely ignored. All
relevant statistics for the construction of P must thus involve some in-
teraction between object features and the features of locations to which
they are assigned; “main effects” of object or location features, in the
usual sense of the term, are not meaningful in this context. With respect
to the features themselves, these may include both attributes (features
of the individual location or object per se) and relations (features of
object or location sets). Here, we will limit ourselves to relations that
are dyadic (i.e., defined on pairs) and single-mode (i.e., that do not mix
objects and locations). Thus, our effects should be functions of feature
vectors, and/or (possibly valued) graphs.

While this may seem to leave innumerable possibilities, we can
further focus our attention by noting that the purpose of P is ultimately
to control the assignment of objects to locations. This suggests immedi-
ately that the effects of greatest substantive importance will be those that
draw objects toward or away from particular locations. Table 1 provides
one categorization of such effects by feature type. In the first (upper-left)
cell, we find effects that express direct attraction or repulsion between
particular objects and locations, based on their attributes. In the second
(upper-right) cell are effects that express a tendency for objects linked
through connected locations to be particularly similar or distinct. (Spa-
tial autocorrelation is a classic example of such an effect.) The converse
family of effects is found in the third (lower-left) cell; these effects repre-
sent a tendency for objects to be connected to other objects with similar
(or different) locations. A tendency for husbands and wives to make



GENERALIZED LOCATION SYSTEMS 297

TABLE 1
Elements of the Social Potential

Location Attributes Location Relations

Object Attributes Attraction/repulsion
effects

Object homogene-
ity/heterogeneity effects
(through locations)

Object Relations Location homogene-
ity/heterogeneity
effects (through
objects)

Alignment effects

similar career choices—where careers are interpreted as “locations”—
serves as an example of a location homogeneity effect. Note that the
essential difference between cells two and three lies in whether the clus-
tering/dispersion of similar objects is being assessed (cell 2) versus the
assignment of connected (but not necessarily similar) objects to simi-
lar/dissimilar locations (cell 3). This will be discussed in greater detail
below. Finally, in the fourth (lower-right) cell we have effects based on
the tendency of location relations to align (or disalign) with object re-
lations. Propinquity, for example, is a tendency for adjacent objects to
reside in nearby locations.

Taken together, these four categories of effects combine to form
the social potential. Under the assumption of linear decomposability,
we thus posit four subpotentials (one for each category) such that

P(�) = Pα(�) + Pβ(�) + Pγ (�) + Pδ(�), (5)

where Pα is the potential associated with attraction/repulsion effects,
Pβ is the potential associated with object heterogeneity effects, Pγ is the
potential associated with location heterogeneity effects, and Pδ is the
potential associated with alignment effects. We now consider each of
these functions in turn.

3.2.1. Attraction/Repulsion Potential
The first class of effects that must be represented in any practical
location system are global attraction/repulsion—also called “push/
pull”—effects. Residential locations, potential firm sites, occupations,
and the like have features that make them generally likely to attract or
repel certain objects (be they persons, organizations, or other entities).
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Such effects are naturally modeled via product-moments of attributes.
Let Q ∈ Rm×a, X ∈ Rn×a be exogenous features reflecting location and
object attributes (respectively) and let α ∈ Ra be a parameter vector.
Then we may define Pα as

Pα(�) =
a∑

i=1

αi tα
i (�) , (6)

=
a∑

i=1

αi

n∑
j=1

Q� j i X j i , (7)

where tα is a vector of sufficient statistics.
The behavior of equation (7) is quite intuitive. For instance, let

Qi be a location feature and let Xi = (1, . . . , 1) be a constant object
feature. Then α i > 0 and α i < 0 produce attraction and repulsion effects
(respectively) based on Qi . If the effect in question is stronger or weaker
for particular objects, this may in turn be produced by allowing Xi to
vary.

One substantively important case of such an effect is discrimina-
tion. Discrimination may be understood as a conditional tendency for
individuals with certain features to be placed in (or denied access to)
certain positions. In terms of social potential, this is simply a push/pull
effect where Qi describes the location feature with respect to which dis-
crimination is occurring and Xi encodes the individual feature or group
membership that is the basis of discrimination. Such an approach is
operationally similar to the treatment used in conventional regression
analyses of wage discrimination (e.g., Huffman and Cohen 2004), al-
though there is an important difference in interpretation. While a wage
discrimination effect represents a marginal increase/decrease in wages
for persons with certain features,2 a discrimination effect within the lo-
cation model represents a conditional tendency for persons with certain
features to be differentially assigned to particular positions (or positions
with particular features). The difference between the two may be appre-
ciated by contemplating a hypothetical change in which Xi becomes

2 Note that this “increase” may be interpreted as a difference in means
rather than a causal difference. The latter is commonly employed, however.
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identical for all actors. This would lead a conventional wage discrimi-
nation effect model to predict a mean shift in population wages, while
such a shift need not occur under the location model. This last is because
a location system model of wage attainment effectively models the pro-
cess of competition among workers for a fixed set of potential jobs (not
all of which have to be filled), rather than taking wage to be a property
that arises from the intrinsic properties of the actors themselves (irre-
spective of the jobs available). The ability to capture such institutional
constraints is an attractive property of the location approach. Of course,
discrimination effects need not be confined to wages—any tendency for
differential assignment may be included in the same manner.

3.2.2. Object Homogeneity/Heterogeneity Potential
A second class of effects concerns object homogeneity/heterogeneity—
that is, the conditional tendency for associated locations to be occupied
by objects with similar (or different) features. Let Y ∈ Rn×b be a matrix
of object attributes, B ∈ Rb×m×m be an adjacency array on the loca-
tion set, and β ∈ Rb be a parameter vector. We then define the object
homogeneity/heterogeneity potential by

Pβ(�) =
b∑

i=1

βi t
β

i (�) , (8)

=
b∑

i=1

βi

n∑
j=1

n∑
k=1

Bi� j �k

∣∣Y j i − Yki
∣∣ , (9)

where, as before, tβ is a vector of sufficient statistics. It should be noted
that the form of tβ is closely related to Geary’s C, a widely used index
of spatial autocorrelation (Cliff and Ord 1973). tβ is based on absolute
rather than squared differences and it is not normalized in the same
manner as C, but its behavior is qualitatively similar in many respects.

As a simple illustration of Pβ , let L be a set of disjoint spatial
regions with contiguity matrix Bi ··· Let O represent a population of
households and let Y·i be a vector representing an object feature (e.g., a
categorical code for racial self-identification of the primary household
informant). Then β i < 0 corresponds to a tendency for households with
similar features (here, race) to be contiguously located, while β i > 0 fa-
vors a heterogeneous assignment. Put another way, negative β values
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induce homogeneity or segregation, while positive β values induce het-
erogeneity or supra-random mixing. This situation can be complicated
further by allowing B to take on arbitrary values: the magnitude of Bijk

controls the strength of connection between the j, k locations on the
ith feature, while the sign of Bijk determines whether β i > 0 induces
heterogeneity (Bijk > 0) or homogeneity (Bijk < 0). Thus, it is possible
to model both effects within the same relation. Similarly, a diagonal
Bi ·· matrix can be used to model homogeneity/heterogeneity within lo-
cations in the absence of cross-location ties. Such a structure may be
employed, for instance, when attempting to model occupational segre-
gation; in this case, L represents the set of occupations and setting Bi ··
equal to the identity matrix allows β i to directly parametrize the extent
of “segregation pressure” within the system.

3.2.3. Location Homogeneity/Heterogeneity Potential
The parallel case to Pβ is Pγ , which models the effect of location ho-
mogeneity or heterogeneity through objects. Let R ∈ Rm×c be a matrix
of location features, A ∈ Rc×n×n be an adjacency array on the object set
and γ ∈ Rc be a parameter vector. We then define Pγ as follows:

Pγ (�) =
c∑

i=1

γi t
γ

i (�) (10)

=
c∑

i=1

γi

n∑
j=1

n∑
k=1

Ai jk
∣∣R� j i − R�ki

∣∣ . (11)

As implied by the above, tγ is the vector of sufficient statistics
for location homogeneity. tγ is at core similar to tβ , save in that the role
of object and location are reversed: absolute differences are now taken
with respect to location features and are evaluated with respect to the
connections between the objects occupying said locations.

While Pγ may seem less intuitive than Pβ , its utility is easily
demonstrated via a simple example. Consider, for instance, the case of
wage rates within married couples. To set up the problem, we begin by
letting Ai ·· be a matrix representing all marital ties among members of
the sample; this will consist of a set of isolated symmetric dyads, accom-
panied by isolates if the sample includes unmarried persons. L is taken in
this case to be a collection of jobs, each of which is associated with a wage
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rate (contained in R·i ). For γi > 0,Pγ then places more weight on job
allocations that increase the within-couple wage rate differences (ceteris
paribus), and γ i < 0 produces the opposite effect (i.e., within-couple
wage homogeneity). Processes leading to within-couple wage hetero-
geneity have been postulated by Becker (1991), among others; by turns,
several processes identified by social capital theorists (Granovetter
1973; Calvo-Armengol and Jackson 2004) would be expected to lead to
within-couple homogeneity in wage rates. Such effects can be modeled
directly through Pγ , above and beyond other allocative mechanisms.

3.2.4. Alignment Potential
The final element of the social potential is the alignment potential, Pδ,
which expresses tendencies toward alignment or disalignment of object
and location relations. Given object and location adjacency arrays W ∈
Rd×n×n and D ∈ Rd×m×m (respectively) and parameter vector δ ∈ Rd ,
the alignment potential is given by

Pδ(�) =
d∑

i=1

δi tδ
i (�) (12)

=
d∑

i=1

δi

n∑
j=1

n∑
k=1

Wi jkDi� j �k (13)

where, as in the prior cases, tδ represents the vector of sufficient statistics.
The form chosen for tδ is Hubert’s gamma, which is the standard matrix
cross-product moment (see Hubert [1987] for a range of applications).

Although the alignment potential has been utilized in prior work
on graph comparison (see Butts, this volume), our application is more
concerned with modeling the direct impact of relations on location as-
signment. As the name implies, the alignment potential captures the ex-
tent to which relations among objects are mirrored by relations among
their associated locations. Consider, for instance, a collection of disjoint
spatial regions with travel distance matrix Di ··, and a population of ac-
tors whose kinship network is represented by the adjacency matrix Wi ···
Where δ i < 0, the kinship network is propinquitous; that is, actors tend
to reside (ceteris paribus) in locations that are physically proximate. By
contrast, δ i > 0 would indicate a dispersal effect, in which actors who
are tied to one another tend to occupy more distant locations. (Such an
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effect might be expected, for instance, among firms that are tied to one
another via production of similar products.)

Another important alignment effect is density dependence—the
tendency for objects to cluster (positive dependence) or disperse (neg-
ative dependence) with respect to locations. To model density depen-
dence, we create an object relation Wi ·· representing a complete graph
and employ the identity matrix for Di ··· Under this construction, tδ

i in-
dexes the extent to which objects are clustered in a small number of
locations; δ i > 0 increases this tendency, while δ i < 0 inhibits it. Replac-
ing the identity matrix with an inverse distance matrix allows for a more
general form of spatial dependence, but the general intuition is similar.

As a final point, it may be noted that the alignment effect is
“generic” for the potential family employed here in the sense that the
attraction/repulsion, object heterogeneity, and location heterogeneity
statistics can be written as alignment statistics on suitably transformed
input matrices. We may thus usefully characterize the present social po-
tential family as that composed of all potential linear combinations of
matrix cross product-moments between object and location features.
While this also means that (given appropriate data transformations)
P can be written entirely in terms of Pδ, we continue to separate the
subpotentials throughout the paper. One reason for this is substantive:
as Table 1 shows, each subpotential arises from a conceptually distinct
combination of object and location features and is most easily under-
stood in this fashion. Another reason for the separation is computa-
tional; specifically, there are computational shortcuts that are available
for other effects, which cannot be realized in the generic Pδ case. While
we continue to draw such distinctions, then, it should be borne in mind
that they are not essential in character.

3.2.5. Combined Linear Potential
We are now ready to form the combined linear social potential. Sub-
stituting the quantities of equations (7) through (13) into equation (5)
gives us

P(�) =
a∑

i=1

αi tα
i (�) +

b∑
i=1

βi t
β

i (�) +
c∑

i=1

γi t
γ

i (�) +
d∑

i=1

δi tδ
i (�) (14)
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in terms of sufficient statistics, or

=
a∑

i=1

αi

n∑
j=1

Q� j i X j i +
b∑

i=1

βi

n∑
j=1

n∑
k=1

Bi� j �k

∣∣Y j i − Yki
∣∣

+
c∑

i=1

γi

n∑
j=1

n∑
k=1

Ai jk
∣∣R� j i − R�ki

∣∣

+
d∑

i=1

δi

n∑
j=1

n∑
k=1

Wi jkDi� j �k (15)

in terms of the underlying covariates. Together with equation (3), equa-
tion (15) specifies a regular exponential family of models for the general-
ized location system. As we have seen, this family allows for the indepen-
dent specification of attraction/repulsion, heterogeneity/homogeneity,
and alignment effects (including differential attractiveness, segregation,
homophily/propinquity, and density dependence as special cases). We
now proceed to a consideration of some of the properties of this model
family, before turning to the problem of simulation.

3.2.6. Interpreting the Social Potential
Per equation (3), the social potential is a real-valued function P on C

such that the probability of observing any given configuration � ∈ C

is proportional to exp(P(�)). As we have seen, P can be constructed
so as to incorporate a variety of effects, ranging from simple attrac-
tion/repulsion to the enhancement or suppression of heterogeneity.
These effects are parametrized via one or more sufficient statistics, which
are weighted by coefficients. Beyond the narrower discussion of Sec-
tion 3.2, it is useful to consider some of the ways in which the social
potential per se (and any associated parameters) may be interpreted. In
the discussion that follows, we economize notation slightly by employ-
ing the general parameter vector θ = (α, β, γ , δ) in place of the four
separate parameter vectors: attraction, object heterogeneity, location
heterogeneity, and alignment parameter vectors. We will likewise con-
catenate the four sufficient statistic vectors as t = (tα, tβ , tγ , tδ), leading
to the more compact social potential expression P(�) = θTt(�). Given
this, we now consider the interpretation of P in terms of total system
behavior and of hypothetical microlevel dynamics.
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Holistic Interpretation. Since Pr(S = �) ∝ exp(P(�)),P can be prop-
erly regarded as providing an expression for the joint behavior of the
location system as a whole. In particular, the system is more likely to
be observed in configurations of high potential than in configurations
of low potential, which leads to an immediate interpretation for a given
parameter, θ i . Where θ i > 0, configurations for which the associated
statistic ti is large are given higher potential (ceteris paribus); thus pos-
itive values of θ i indicate a general tendency of the location system to
exhibit configurations with higher ti values than would be otherwise ob-
served. Similarly, negative values of θ i imply that configurations with
large values of ti are suppressed. This is easily seen by considering the
probability ratio for two hypothetical configurations �, �′ ∈ C under
potential P :

Pr (S = �′)
Pr (S = �)

= exp
(
P(�′)

)
Z(P, C)

Z(P, C)

exp
(
P(�)

) (16)

= exp
(
P(�′) − P(�)

)
(17)

= exp
(

θT(
t(�′) − t(�)

))
. (18)

Thus, every unit change in ti multiplies the odds of observing �′ versus
� by a factor of eθi . This observation provides a direct quantitative
interpretation of potential function parameters, although it should be
borne in mind that many statistics may not be fully separable in practice.
This phenomenon is well-known in the context of ERG models, for
which the intrinsic relationships between statistics can be particularly
strong (e.g., see Handcock 2003b); it would be a mistake to view this as a
unique property of models for dependent systems, however, since it will
arise in any probability model whose sufficient statistics are potentially
related to one another (e.g., OLS regression with correlated predictors).
When dealing with heavily correlated statistics, it may be more useful
to interpret the effects of parameters in batches (much as we might
jointly interpret the parameters of a polynomial regression). Alternately,
it may in some cases be helpful to reparameterize t so as to produce
statistics that are closer to being orthogonal over C. Regardless of any
intra-t relationships, however, the relationship between relative state
probability and changes in t described in equation (18) remains a valid
means of interpreting the effect of θ as a whole.
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In keeping with the above, it should be emphasized that equation (3) may
be interpreted as a model for the distribution of a single cross-sectional
observation of a location system, even where no dynamic equilibrium
interpretation is appropriate. In this case, P simply parametrizes the
dependence among system elements within the observed cross-section,
irrespective of the putative generating mechanism. Similar “fall-back”
interpretations exist for other models in this general class (for example,
ERGs) and are not unique to the location system framework.

Microdynamic Interpretation. In building the location system model,
it will be noticed that little has been said about the underlying micro-
processes that give rise to the configuration vector, or about the detailed
evolution of � under equilibrium conditions (other than distributional
properties). This omission is deliberate: the location system model may
be viewed as process agnostic, in that there are many conceivable mi-
croprocesses that would give rise to the same equilibrium distribution.
Nevertheless, there are some useful statements that can be made about
dynamic aspects of location models and we review several of these here.

First, we posit a family of microprocesses whose long-run dynamics
give rise to the equilibrium distribution of equation (3). Consider a pro-
cess in which, at finite (but otherwise arbitrary) time intervals, a random
object X is drawn with some fixed distribution such that all objects are
selected with positive probability. Let � be the pre-draw system state and
let X,i � for i ∈ 1, . . . , m be equal to � save for the assignment of object
X to state i. The system then transitions from � to X,i � with probability
IC(X,i�)(

∑m
j=1 IC(X, j�) exp(θT(t(X, j�) − t(X,i�))))−1 (with � to � being an

acceptable “transition”), the realization of which becomes the base state
for the next transition event. So long as it is possible to transition from
any given state � to state �′ in a finite series of moves, the states of the
above process form an irreducible Markov chain on C. Furthermore,
the transition probabilities at each step can be recognized as the con-
ditional distribution of �X, given θ and the other elements of �. (This
follows directly from equation [3], where the set of accessible states is re-
stricted to those that involve changing only �X.) A Markov chain of this
type is commonly known as a Gibbs sampler (Gilks, Richardson, and
Spiegelhalter 1996a), and its equilibrium distribution is the joint dis-
tribution of �; here, this is simply the distribution of equation (3),
demonstrating that a process in which each object moves randomly
in proportion to the relative exponentiated potential of its possible
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locations will generate a global distribution of states that is compat-
ible with the location system model. If the time intervals between tran-
sition events are independent of the system state, it also immediately
follows that the expected fraction of time spent in each accessible state
is similarly proportional to exp (P(�)) (where such expectations exist).

One type of microlevel process with this behavior stems from a
class of potential games (as alluded to in Section 1.1). Let us consider
an n player “assignment game” (with the object set O = (o1, . . . , on)
corresponding to the players), in which each player has m potential
strategies (corresponding to the choice among the elements of L). Since
each player’s strategy corresponds to a choice of location, we can repre-
sent an assignment of strategies to all players by �. We assume that the
preferences of a given player oi are represented by the utility ui (�i , �−i ),
where the first argument is trivially the strategy of oi and the second
denotes the strategies of all other players. Now define C′ to be the set
of all accessible �−i (irrespective of �i ). Given this, we say that the
assignment game belongs to the class of potential games if there exists
a function ρ : (L, C′) �→ R such that

ui
(
l j , �−i

) − ui (lk, �−i ) = ρ
(
l j , �−i

) − ρ (lk, �−i ) (19)

for all i ∈ 1, . . . , n, l j , lk ∈ L, �−i ∈ C′. (This follows immediately from
the definition of Young [1998: 36].) Intuitively, the above implies that
an assignment game is a potential game if and only if we can posit some
function (the potential, ρ) such that the change in utility for a unilat-
eral strategy shift is equal to the change in potential. While assuming
identical utilities for all actors will clearly result in such a game, this is
not a necessary condition: for instance, utilities that are identical up to
an additive constant will also satisfy the above definition.

For our purposes, the above is most relevant when we take
ρ(�i , �−i ) = P(�). In this case, the potential for the assignment game is
equal to our social potential and changes in utility for unilateral moves
are equal to the corresponding changes in P . Let us further posit that
the assignment game is played by boundedly rational actors who select
strategies according to a stochastic choice model. Specifically, given an
opportunity to move, we posit that actor oi selects his or her location
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as a random variable K i with probability mass

Pr (Ki = l j ) = IC(i, j�)
exp

(
ui (l j , �−i )

)
m∑

k=1

IC(i,k�) exp
(
ui (lk, �−i )

) (20)

(where i, j � denotes the assignment formed by adding � i = j to � −i ).
This can be rewritten as

Pr(Ki = l j ) = IC(i, j�)

[
m∑

k=1

IC(i,k�) exp
(
ui (lk, �−i ) − ui (l j , �−i )

)]−1

(21)

and substitution of utility differences for potential differences then yields

= IC(i, j�)

[
m∑

k=1

IC(i,k�) exp
(
P(lk ∪ �−i ) − P(l j ∪ �−i )

)]−1

. (22)

This is immediately recognizable as the transition mechanism for the
Gibbs sampler (as shown above); hence, the state distribution arising
from strategy choice in the assignment game will be proportional to
exp(P(�)), so long as the irreducibility condition of the Gibbs sampler is
met. This may be satisfied in a number of ways, including (1) sequential
moves by each actor in turn and (2) sequential moves by randomly
chosen actors, where every actor is chosen from a fixed distribution
with positive probability (Gilks 1996). Heuristically speaking, the long-
run dynamics of such a system are generally insensitive to the details
of the movement opportunity process, so long as actions are selected in
accordance with equation (20).

As these results imply, the generalized location system model is
compatible with certain microprocess interpretations, including poten-
tial games like those considered by Zhang (2004) and Young (1998). In
the latter circumstance, specific model parameters can be interpreted
as reflecting the partial utilities associated with changes in their cor-
responding statistics. Although it should be emphasized that these are
not the only processes that can lead to distributions of the type ex-
plored here, they nevertheless serve as useful examples of how such
micro/macro connections (strongly endorsed by Coleman [1990]) may
be made in practice.
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3.3. Simulation

For purposes of both prediction and inference, it is necessary to simulate
the behavior of the location system model for arbitrary covariates and
parameter values. While it is not generally possible to take draws from
the location system model directly, approximate samples may be readily
obtained by means of a Metropolis algorithm.3 Given that numerous
accessible references on the Metropolis algorithm are currently available
(e.g., see Gamerman 1997; Gilks et al. 1996b; Gelman et al. 1995), we
will focus here on issues that are specific to the model at hand. Fortu-
nately, the location system model is not especially difficult to simulate,
although certain measures are necessary to ensure scalability for large
systems.

To review, a Metropolis algorithm proceeds in the following gen-
eral manner (see Gilks et al. [1996b] for further details). Let S be the
(random) system state. We begin with some initial state �(0) ∈ C and
propose moving to a candidate state � (1), which is generally chosen
so as to be in a neighborhood of � (0). (Some additional constraints—
for example detailed balance—apply to the candidate distribution, but
these do not affect the results given here.) The candidate state is then
“accepted” with probability min(1,

Pr (S=�(1)|P,C)
Pr (S=�(0)|P,C) ). If accepted, the can-

didate becomes our new base state and we repeat the process for � (2).
If rejected, � (1) is replaced by a copy of � (0) and again the process is
repeated. This process constitutes a Markov chain whose equilibrium
distribution (under certain fairly broad conditions) converges to the
target distribution (here, Pr (S|P, C)). It is noteworthy that this pro-
cess requires only that the target distribution be computable up to a
constant factor; this feature makes Metropolis algorithms (and related
MCMC techniques) very attractive to those working with exponential
family models (e.g., Strauss 1986; Snijders 2002; Butts, this volume,
page x).

To implement the Metropolis algorithm, then, our core con-
cern is computation of the probability ratio between states (a problem

3 Obviously, the Gibbs samplers discussed in Section 3.2.6 can also be
used in this capacity; we focus here on the Metropolis algorithm due to its superior
scalability.
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encountered earlier in Section 3.2.6). Given a current state, � (i ), the
probability of accepting a candidate state, � (i+1), is then

Pr (S = �(i+1)|P, C)
Pr (S = �(i )|P, C)

= exp
(
P

(
�(i+1)

))
exp

(
P

(
�(i )

)) Z (P, C)
Z (P, C)

(23)

= exp
(
P

(
�(i+1)

))
exp

(
P

(
�(i )

)) (24)

= exp(P(�(i+1)) − P(�(i ))). (25)

Thus, the log-probability of a state change is simply the difference in
social potentials between the two assignments. In the case of the linear
potential, substituting the potential function from equation (14) further
gives us

P
(
�(i+1)

) − P
(
�(i )

)
=

a∑
j=1

α j
[
tα

j

(
�(i+1) − tα

j

(
�(i ))] +

b∑
j=1

β j

[
tβ

j

(
�(i+1) − tβ

j

(
�(i ))]

+
c∑

j=1

γ j

[
tγ

j

(
�(i+1) − tγ

j

(
�(i ))]

+
d∑

j=1

δ j
[
tδ

j

(
�(i+1) − tδ

j

(
�(i ))] , (26)

or, substituting from equation (15),

=
a∑

g=1

n∑
j=1

αgX jg

[
Q

�
(i+1)
j g − Q

�
(i )
j g

]

+
b∑

g=1

βg

n∑
j=1

n∑
k=1

[
Bg�

(i+1)
j �

(i+1)
k

− Bg�
(i )
j �

(i )
k

] ∣∣Y jg − Ykg
∣∣

+
c∑

g=1

γg

n∑
j=1

n∑
k=1

Ag jk

[∣∣∣R�
(i+1)
j g − R

�
(i+1)
k g

∣∣∣ −
∣∣∣R�

(i )
j g − R

�
(i )
k g

∣∣∣
]

+ ∑d
g=1 δg

∑n
j=1

∑n
k=1 Wg jk

[
Dg�

(i+1)
j �

(i+1)
k

− Dg�
(i )
j �

(i )
k

]
. (27)
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Although equation (27) can be used to compute the potential
difference directly, equation (26) demonstrates that the same quantity
can be expressed in terms of a fixed linear combination of differences in
sufficient statistics. For purposes of simulation, then, we need only track
such differences. (This process is an exact analog to the “changescore”
methods used in ERG simulation tools such as Handcock et al. [2003].)
As this implies, we can speed computation by choosing our proposals
so as to facilitate difference calculations; an obvious choice in this re-
gard is a proposal mechanism that reassigns a randomly chosen object
to a randomly selected location. In addition to simplicity of imple-
mentation, this proposal density admits considerable improvement in
computational efficiency over the iterated calculation of equation (27).
In particular, let � be the current state and � ′ the proposal formed
by assigning object j to location k. Then the respective differences in
sufficient statistics are as follows:

tα
i (�′) − tα

i (�) = X j i
[
Qki − Q� j i

]
(28)

tβ

i (�′) − tβ

i (�) =
n∑

g=1

∣∣Y j i − Ygi
∣∣ [Bik�g − Bi� j �g + Bi�gk − Bi�g� j

]
(29)

tγ

i (�′) − tγ

i (�) =
n∑

g=1

[
Ai jg + Aig j

] [∣∣Rki − R�gi
∣∣ − ∣∣R� j i − R�gi

∣∣] (30)

tδ
i (�′) − tδ

i (�) =
n∑

g �= j,g=1

[
Wi jg

(
Dik�g − Di� j �g

)
+Wig j

(
Di�gk − Di�g� j

)]

+Wi j j
(
Dikk − Di� j � j

)
. (31)

Calculation of equation (26) for a single reassignment using equa-
tions (28) through (31) is an O(n) operation. This is a substantial im-
provement over the O(n2) complexity for direct application of equa-
tion (27) in the arbitrary case, particularly for large-n systems. As a side
note, it should be mentioned that occupancy constraints may not allow
single assignments to take place. (The permutation case is a trivial ex-
ample, since the smallest change possible is the dyadic exchange.) In this
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case, the proposal mechanism may need to include multiple reassign-
ments in a single step; however, it is still the case that the above compu-
tations can be performed for each such reassignment and the resulting
complexity is still linear in n so long as the number of reassignments per
step is bounded by a constant. Even fairly complex schemes can thus
be reduced to an iterated application of the reassignment calculation.

3.3.1. Estimating the Partition Function
Though the above provides the essential elements needed to simulate
draws from the location system model, the approach used bypasses cal-
culation of the partition function. This is deliberate: Z is not directly
computable in polynomial time and the unevenness of the Boltzmann
factor (exp(P(�))) renders simple Monte Carlo strategies hopelessly in-
efficient. What is to be done, however, when the partition function (or
its derivatives) is needed for a specific application (such as the deviance
calculations discussed in Section 3.4)? In this case, we employ the fact
that we are able to simulate draws from the location system model to
produce an importance sample, thereby allowing efficient Monte Carlo
quadrature of Z.

To begin, we assume that a sample of M draws (denoted �(1), . . .,
�(M)) have been taken from the location system model with combined
parameter vector θ = (α, β, γ , δ) and vector of sufficient statistic func-
tions t = (tα, tβ , tγ , tδ). Our interest is in estimating Z(θ ′, C), where θ ′

is a combined parameter vector that is close to θ (in the sense that ‖θ ′

− θ‖ is small). Our estimator of the partition function is based on the
result that

lim
M→∞

|C|
M∑

i=1

exp
((

θ ′ − θ
)T t

(
�(i )))

M∑
i=1

exp
(−θTt

(
�(i ))) = Z(θ ′, C). (32)

This result may be shown as follows. First, we note that, from the stan-
dard Monte Carlo theorem in the discrete case (Kalos and Whitlock
1986),

lim
M→∞

1
M

M∑
i=1

f
(
�(i )) Z (θ, C)

exp
(
θTt

(
�(i )

)) =
∑
�′∈C

f
(
�′) (33)



312 BUTTS

where convergence is almost sure and in mean square, so long as the
function f : C �→ R has a finite second moment. Setting f ( � ) = exp
(θ ′T t( � )) then gives us

lim
M→∞

1
M

M∑
i=1

exp
(
θ ′Tt

(
�(i ))) Z (θ, C)

exp
(
θTt

(
�(i )

)) =
∑
�′∈C

exp
(
θ ′Tt(�′)

)
(34)

= Z
(
θ ′, C

)
. (35)

While this gives us an expression for Z (θ ′, C) on the right hand side, it
requires us to know the value of Z (θ, C) and thus is of little immediate
use. Since the partition function does not depend on � , however, it may
be pulled out of the initial summand:

1
M

M∑
i=1

exp
(
θ ′Tt

(
�(i ))) Z (θ, C)

exp
(
θTt

(
�(i )

))
= Z (θ, C)

1
M

M∑
i=1

exp
(
(θ ′ − θ )Tt(�(i ))

)
. (36)

Thus,

lim
M→∞

Z (θ, C)
1
M

M∑
i=1

exp
((

θ ′ − θ
)T t

(
�(i ))) = Z

(
θ ′, C

)
. (37)

Dividing through by Z (θ, C) then gives us

lim
M→∞

1
M

M∑
i=1

exp
((

θ ′ − θ
)T t

(
�(i ))) = Z (θ ′, C)

Z (θ, C)
. (38)

To see the value of this, let us return to the left-hand side of
equation (32). Immediately, we note that

|C| ∑M
i=1 exp

(
(θ ′ − θ )T t

(
�(i )

))
∑M

i=1 exp
(−θTt

(
�(i )

)) = |C|M
[

1
M

M∑
i=1

exp
((

θ ′ − θ
)T t

(
�(i )))]

×
[

M∑
i=1

exp
(−θTt

(
�(i )))]−1

. (39)
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As M → ∞, we have already seen that
1
M

∑M
i=1 exp((θ ′ −

θ )Tt(�(i ))) → Z(θ ′, C)
Z(θ, C)

. Therefore, the above becomes (for large M)

≈ |C|M
[

Z (θ ′, C)
Z (θ, C)

] [
M∑

i=1

exp
(−θTt

(
�(i )))]−1

(40)

= |C|Z(
θ ′, C

) [
1
M

M∑
i=1

Z (θ, C)

exp
(
θTt

(
�(i )

))
]−1

. (41)

Now, what of the factor on the right? Returning to equation (33),
we simply take f ( � ′) = 1, which yields

1
M

M∑
i=1

1
Z (θ, C)

exp
(
θTt

(
�(i )

)) →
∑
�′∈C

1 (42)

= |C|, (43)

and thus, by substitution,

lim
M→∞

|C|
M∑

i=1

exp
((

θ ′ − θ
)T t

(
�(i )))

∑M
i=1 exp

(−θTt
(
�(i )

)) = Z
(
θ ′, C

) |C| 1
|C| (44)

= Z
(
θ ′, C

)
. (45)

It therefore follows that we can estimate the partition function directly,
given a sample from the location model. Since the approximation works
well for any θ ′ that is close to θ , only a single sample is usually needed
to compute numerical derivatives.4 In the special case for which we are

4 More properly, the “closeness” of θ ′ to θ can be assessed in terms of the
variance of exp ((θ ′ − θ )T t( � )). To the extent that this function is flat, the associated
integral will be well-approximated (Kalos and Whitlock 1986).
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solely interested in Z(θ, C) (given an importance sample based on θ ),
equation (32) further simplifies to

lim
M→∞

M|C|
M∑

i=1

exp
(−θTt

(
�(i ))) = Z (θ, C) . (46)

This last follows immediately by substitution.

3.3.2. Expected Value Estimates
An important use for the partition function approximation of equa-
tion (32) is the calculation of approximate expected values for the suffi-
cient statistics of the location system model. While these can obviously
be estimated directly via simulation (per Section 3.3), it is in some cases
more efficient to calculate expected statistics by means of the partition
function. In doing so, we exploit the standard result (e.g., Brown [1986])
that, for a regular exponential family with parameter vector θ and suf-
ficient statistics t, the expected value of t under θ is equal to the first
derivative of the logarithm of the partition function with respect to θ .
Allowing t = (tα, tβ , tγ , tδ) and θ = (α, β, γ , δ), this translates to the
relation

Eθ t(�) = d
dθ

ln Z(θ, C) (47)

for the location system model. Since direct computation of Z is in-
feasible, this would seem to be of little use; however, we have already
seen that Z may be approximated from importance sample draws using
equation (32). Here, too, it may at first blush seem that using a sample
to approximate a samplable quantity provides no particular advantage.
However, consider the case in which one must evaluate Eθ t( � ) at several
different points, all of which are reasonably close to one another. In such
situations, equation (32) may be employed to quickly calculate multiple
approximations from a single sample. This is particularly useful when
seeking to calculate derivatives of the expectations themselves, as for the
moment matching method described in Section 3.4.2 below.

Let us begin by assuming that we have drawn an importance sam-
ple � (1), . . . , � (M) from a location system model with support C and
concatenated parameter vector θ (e.g., using a Metropolis algorithm).
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To calculate the expectation of some statistic ti under parameter vector
θ ′, it is natural to replace the derivative of equation (47) by a stan-
dard finite difference approximation (Press et al. 1992). For some ε<< 1
(ε = 0.00001 being a value that gives good precision in most
cases),

Eθ ′ti (�) = d
dθ ′

i
ln Z(θ ′, C) (48)

≈ ln Z(i,θ ′
i +εθ ′, C) − ln Z(i,θ ′

i −εθ ′, C)
2ε

. (49)

Clearly, this is not directly computable. However, we may substitute the
importance sampling estimate of equation (32) to obtain

≈ 1
2ε


ln




|C|
M∑

j=1

exp
((

i,θ ′
i +εθ ′ − θ

)T
t
(
�( j )))

M∑
j=1

exp
(−θTt

(
�( j )))




− ln




|C|
M∑

j=1

exp
((

i,θ ′
i −εθ ′ − θ

)T
t
(
�( j )))

M∑
j=1

exp
(−θTt

(
�( j )))





 , (50)

which simplifies to

=

ln

(
M∑

j=1

exp
((

i,θ ′
i +εθ ′ − θ

)T
t
(
�( j ))))

− ln

(
M∑

j=1

exp
((

i,θ ′
i −εθ ′ − θ

)T
t
(
�( j ))))

2ε
. (51)

Repeating this calculation for each i gives the entire vector of expecta-
tions (if desired). Each such calculation requires O(M) time, whereas
drawing the initial sample requires O(Mn) time (or worse, for exam-
ple, if subsampling—“thinning”—of a larger set of draws is performed
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prior to use); this can be a substantial savings, in practice. Such gains
do not occur without cost, of course. The tradeoff here lies in the accu-
racy of the approximation, which is in turn governed primarily by the
accuracy with which Z(θ ′, C) is estimated. As noted earlier, accuracy of
the partition function estimator is generally high when θ is close to θ ′,
degrading as the distance between θ and θ ′ grows large. For this reason,
it is usually wise to employ equation (51) only when evaluating expecta-
tions in the immediate vicinity of the sampled parameters. Comparison
of directly estimated expectations with those estimated by this method
can be used to evaluate the degree of closeness required for a particular
model, where this is a significant concern.

3.4. Inference

As noted elsewhere in this paper, an important benefit of the use of
discrete exponential families in the modeling of location systems is the
ability to leverage existing inferential theory (for example, Barndorff-
Nielsen 1978; Brown 1986). Given a location system specified by the
tuple (L, O, C, FL, FO) with parametric social potential P , the joint
likelihood of observed state � is given by equation (3). Since this quan-
tity is well-defined, principled inference using Bayesian or maximum
likelihood methods would seem to be a straightforward affair; the com-
putational expense of directly calculating the required normalizing fac-
tor, Z(P, C) makes this task less trivial than it might be, however. For-
tunately, a number of methods exist for circumventing this problem.
Here, we will consider two: estimation based on pseudo-likelihoods and
maximum likelihood estimation via first moment matching. These two
approaches build on each other (with the former providing initial esti-
mates to be refined by the latter) and will hence be considered in the
above order. Other alternatives are also available (the Monte Carlo ap-
proach of Geyer and Thompson [1992] being an obvious possibility; see
Butts [this volume] for a closely related application) and in general it
should be possible to apply any method for inference on regular discrete
exponential families to the location system model.

3.4.1. Maximum Pseudo-Likelihood Estimation
While we have seen that it is possible to estimate the normalizing fac-
tor for the likelihood of equation (3) using importance sampling, this
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process is too computationally expensive to permit direct maximization
of the likelihood surface (though see Geyer and Thompson [1992] for
an effective ratio-based approach). One alternative approach (originat-
ing with Besag [1975] but better known to sociologists from Strauss and
Ikeda [1990]) involves approximating the joint likelihood of the data by a
product of conditional likelihoods; the parameter vector that maximizes
this pseudo-likelihood is then used as an estimator of the unknown true
parameters. Such a vector is known as a maximum pseudo-likelihood
estimator, or MPLE. Put more formally, let Y be a vector of k ran-
dom variables, with parameter vector φ. Then the pseudo-likelihood of
realization y of Y is given by

L̃(y|φ) =
k∏

i=1

p(Yi = yi | y−i , φ) (52)

≈ p(Y = y | φ). (53)

Note that the pseudo-likelihood is equal to the true likelihood when
the elements of Y are independent given φ. (This follows immediately
from the fact that p(Yi = yi |y−i , φ) = p(Yi = yi |φ) and p(Y = y |φ)
= ∏k

i=1 p(Yi = yi | φ) under conditional independence.) Where this as-
sumption does not hold, L̃ will depart from the true likelihood to some
extent. Nevertheless, the maximum of L̃ with respect to φ is often close
to the corresponding maximum on the likelihood surface, making it a
potentially viable estimator when L̃ is easily calculable. Alternatively,
the MPLE can be used as an initial approximation to the true max-
imum likelihood estimator (MLE), to be subsequently refined using
other methods. This last strategy has proved practical in the estima-
tion of ERG models (as implemented, for example, by Handcock et al.
[2003]) and is that suggested here.

To define a pseudo-likelihood function for the location system
model, it is first necessary to select a partition of the joint distribution
into individual elements. The conditional likelihoods of these elements
are then multiplied to produce the corresponding pseudo-likelihood. In
the present case, the most natural decomposition of the random system
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state S is in terms of the individual object assignments. The appropriate
conditional probability in this case is then

Pr (Si = �i |S−i = �−i ,P, C)

= IC(�)

[
m∑

j=1

IC(i, j�) exp
(
P

(i, j�
) − P (�)

)]−1

, (54)

leading to the corresponding pseudo-likelihood function

L̃(�|P, C) =
n∏

i=1

Pr (Si = �i |S−i = �−i ,P, C). (55)

Note that the evaluation of L̃ requiresO(nm) potential difference
computations. Since these can be performed in O(n) operations (per
Section 3.3), the total computational complexity of L̃ is O(n2m). This is
moderately expensive, but obviously far better than O(mn)! To form the
MPLE, we simply find the parameter vectors that maximize L̃— that
is,

(
α̃, β̃, γ̃ , δ̃

) = arg max
(α,β,γ,δ)

L̃(� |P, C). (56)

This can be done using standard heuristic optimization methods, such
as Newton’s method, simulated annealing, or the like (Press et al. 1992;
Acton 1990).

Although the above partition of S is perhaps most natural, it
cannot be applied for certain choices of C. In particular, if there ex-
ists at least one location for which P+

i = P−
i > 0, then not all ob-

jects can be unilaterally assigned. In this case, a reasonable choice for
the decomposition of S is in terms of the set of dyadic exchanges
on � (i.e., location swaps). In this case, we may treat the ordering
of each dyad as our variable of interest, leading to the conditional
distribution

Pr (Si = �i , Sj = � j |{Si , Sj } = {�i , � j }, S−{i j} = �−{i j},P, C)

= IC(�)
[
1 + IC

(
i,� j

(
j,�i �

))
exp

(
P

(
i,� j

(
j,�i �

)) − P (�)
)]−1

. (57)
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To form the associated pseudo-likelihood, we then take the product of
the conditional distributions over all dyads in O:

L̃p(�|P, C) =
n∏

i=1

i−1∏
j=1

Pr (Si = �i , Sj = � j |{Si , Sj }

= {�i , � j }, S−{i j} = �−{i j},P, C). (58)

(Note that this is directly analogous to the permutation model pseudo-
likelihood of Butts [this volume, page x].) The complexity of this calcula-
tion is O(n3), which will be better than the complexity of the single-state
pseudo-likelihood when m > n. On the other hand, L̃p conditions on
the occupancy structure of � and as such may represent less information
than L̃. To find the MPLE under dyadic exchange, we simply substitute
L̃p for L̃ in equation (56) and solve in the same manner as the single
move case. This allows us to compute MPLEs for most choices of C, in-
cluding the important special case of 1:1 matchings (i.e., permutations).

Although the MPLE is not guaranteed to have good frequen-
tist properties in the general case, it is sometimes used directly (e.g.,
see Wasserman and Pattison [1996]; Pattison and Wasserman [1999];
Robins et al. [1999]; Contractor et al. [2006]). Where this is to be done,
it is strongly recommended that draws from the estimated model be sim-
ulated (using the method of Section 3.3) and that the first moments of
the simulated sufficient statistics be compared to the same statistics on
the observed data. To the extent that substantial disparities are observed
(e.g., with respect to a t or similar statistic), the MPLE should be em-
ployed cautiously (if at all). On the other hand, a close match between
the mean simulated statistics and the observed statistics indicates that
the MPLE is in fact functionally close to the MLE; we shall see the basis
for this conclusion in the next section.

3.4.2. Maximum Likelihood Estimation
Maximum likelihood estimation for statistical exponential families has
been extensively studied (see Johansen [1979] or Brown [1986] for re-
views) and is attractive on both frequentist and approximate Bayesian
grounds (the MLE appearing as a noninformative limit of Bayes esti-
mators in many settings [Robert 1994]). Under the linear social poten-
tial proposed in Section 3.2, the maximum likelihood estimator for the
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parameters of P given observed state � obs is

(
α̂, β̂, γ̂ , δ̂

) = arg max
(α,β,γ,δ)

IC(�obs)
exp (P (�obs | α, β, γ, δ ))

Z (P, C)
, (59)

where this maximum exists. Under the proposed social potential, equa-
tion (3) defines a regular exponential family and it is thus a standard
result that the MLE exists (and is unique) if and only if the elements of
t are finite and affinely independent and if t( � ) belongs to the relative
interior of the convex hull of t over C (Barndorff-Nielsen 1978). In prac-
tice, nonexistence of the MLE arises where one or more statistics (or a
linear combination thereof) are maximally extreme (e.g., all women oc-
cupying the highest paid position and all men occupying the lowest paid
position in an occupational model with a gender/wage effect). In this
case, the MLE effectively diverges (in our example, the apparent gender
effect is unbounded) and no finite estimate exists. Fortunately, such ex-
treme arrangements are unlikely to occur in large systems and even then
practical approximations (e.g., truncating the diverging parameters at
values of very large, but finite, magnitude) will usually permit reason-
able estimates of the remaining parameters (see Handcock [2003a] for
a discussion).

Due to the expense of approximating Z, direct maximization of
the likelihood is generally infeasible. Since (3) is a regular exponential
family, however, it is a standard result that

E(α̂,β̂,γ̂ ,δ̂)
(
tα (�) , tβ (�) , tγ (�) , tδ (�)

) = (tα
obs, tβ

obs, tγ

obs, tδ
obs), (60)

where (tα
obs, tβ

obs, tγ

obs, tδ
obs) is the vector of observed sufficient statis-

tics, provided that the MLE exists. This result motivates a method of
moments technique, in which heuristic search is used to equate the
(simulated) expected sufficient statistics to their observed values; the
parameter vector that gives rise to these values is the MLE. Although
sometimes slow, this approach can be quite efficacious and has been
successfully employed by Snijders (2002) in the context of
exponential random graph families. In practice, convergence
can be accelerated by initiating the search procedure with
an initial approximation to (α̂, β̂, γ̂ , δ̂)—the MPLE, (α̃, β̃, γ̃ , δ̃),
is suggested for this purpose. Simulation costs in estimating
E(α̂,β̂,γ̂ ,δ̂)

(
tα (�) , tβ (�) , tγ (�) , tδ (�)

)
can also be reduced by making use
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of the fact that E(α̂,β̂,γ̂ ,δ̂)(t
α(�), tβ(�), tγ (�), tδ(�)) = d

d(α̂,β̂,γ̂ ,δ̂)
ln Z(P, C)

as was discussed in Section 3.3.2. Specifically, an initial sample from
the current point estimate (using the method of Section 3.3) can be
used as an importance sample for the numerical estimation of the
derivatives of ln Z(P, C) (e.g., by applying the method of finite differ-
ences to the logged partition function estimator of Section 3.3.1). This
same sample can be reused multiple times to obtain the derivatives of
E(α̂,β̂,γ̂ ,δ̂)(t

α(�), tβ(�), tγ (�), tδ(�)) in the vicinity of the original estimate,
which can then be used to project a new estimate that leads to a better
approximation of (tα

obs, tβ

obs, tγ

obs, tδ
obs) (e.g., via Newton’s method). A

new sample is then drawn from the refined estimate and the process is
repeated until the desired degree of convergence is obtained.

Given the resulting MLE θ̂ = (α̂, β̂, γ̂ , δ̂), the associated deviance
can also be estimated by means of the importance sampling method of
Section 3.3.1. Specifically, let � (1), . . . , � (M) be draws from S|θ̂ (e.g.,
taken via the Metropolis algorithm of Section 3.3). Then substitution
from the partition function estimator of equation (46) into the likelihood
of equation (3) yields

D(�obs|θ̂ ) = −2 ln Pr (S = �obs) (61)

≈ −2P(�obs|θ̂ ) + 2 ln |C| + 2 ln M − 2 ln

(
M∑

i=1

exp
(−θ̂Tt

(
�(i )))) .

(62)

The estimated deviance may then be used to compare models using
standard selection criteria, such as the AIC or BIC (see Bozdogan [2000]
and Wasserman [2000] for comparative reviews).

With respect to estimates of uncertainty, it should also be noted
that standard asymptotics hold for location model MLEs in the case of
independent observations from the same social system. (This is a conse-
quence of the fact that the location model forms a regular exponential
family; e.g., see Johansen [1979].) Whether similar asymptotic results
can be obtained in the limit of increasing system size is not known. This
problem is essentially equivalent to the problem of asymptotics for expo-
nential random graph models, which is also unsolved at this time. Where
asymptotic results cannot be relied upon, however, Monte Carlo proce-
dures can be employed to obtain standard errors and p-values for classi-
cal tests. (See Hunter and Handcock [2006] for a parallel case involving
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ERG models.) Thus, the standard tools of likelihood-based inference
avail themselves here. Bayesian treatment of the location model is an-
other possibility, although posterior simulation is greatly complicated
by the difficulty of computing the likelihood function. Approximation
methods based on curvature of the posterior near the mode (Gelman
et al. 1995) would seem to provide an obvious starting point.

4. ILLUSTRATIVE APPLICATIONS

One of the positive features of the location system model is the great
number of substantive problems for which it may be employed. Here,
we illustrate some of the behaviors of the model by means of two simple
applications, one involving economic inequality and the other involving
residential segregation. While both are simplified for purposes of expo-
sition, it should be emphasized that slightly elaborated versions can be
fit to data from survey or archival sources using the tools of Section 3.4.
Simulation studies such as these can thus form the basis for subsequent
empirical investigation, without the necessity of adding cumbersome
operationalization assumptions. As a third example, we also demon-
strate the inferential use of the location system model to study position
occupancy in organizations, using a data set of Lazega (2001).

4.1. Job Segregation, Discrimination, and Inequality

Our first example demonstrates the use of the location system in mod-
eling occupational stratification. In the interest of clarity, we restrict
our analysis to a simplified “microeconomy” of 100 workers (objects)
matched with 100 distinct jobs (locations) on a 1:1 basis. Workers are
evenly divided by gender and are randomly allocated to (heterosexual)
couples such that all members of the set have exactly one partner. Fi-
nally, workers are ranked on a unidimensional “human capital” score,
with ranks assigned randomly in alternating fashion by gender. (Thus,
rank distributions are effectively identical by gender and random with
respect to partners.) Jobs are ranked by “wage” and are organized into
ten contiguous occupational categories. Thus, the ten highest-paying
jobs are in one category, followed by jobs ranked 11 through 20, etc.
While this setting is heavily stylized, it nevertheless allows us to capture
basic interactions between occupational segregation, household effects,
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and factors such as discrimination. Such a model could be elaborated
to include hierarchical job categories, distinct unemployed states, ad-
ditional job/worker attributes, and relaxations of assumptions such as
1:1 matching, as appropriate to the data in hand.

In order to represent the above within the location system frame-
work, we begin by translating selected features into the elements of
the social potential of Section 3.1. We here seek to model two att-
raction/repulsion effects: the tendency of workers of particular gen-
ders to be assigned to higher/lower wage jobs (“discrimination”); and
the tendency of workers with higher levels of human capital to be as-
signed to higher/lower wage jobs (“merit”). For this purpose, we set X
such that Xi1 and Xi2 are respectively the gender (coded dichotomously
with male = 1) and the human capital rank (coded from 1 to 100, with
100 representing the highest value) of worker i. The corresponding po-
sition feature matrix, Q, is defined such that Qi1 and Qi2 are both equal
to the wage rank of job i (from 1 to 100 in ascending order); thus, tα

1 (
� ) is the sufficient statistic for the gender/wage interaction, while tα

2 (
� ) captures the corresponding human capital effect. For occupational
segregation, we posit a single statistic tβ arising from a single-column
object feature matrix Y consisting of dichotomous gender codes (as with
X·1) interacting with a dichotomous location-location array B such that
B1i j = 1 if job i belongs to the same occupational category as job j.
The corresponding location heterogeneity statistic that will be of inter-
est here is couple-level wage heterogeneity (described further below), a
property that is parametrized via a statistic tγ formed from a dichoto-
mous object relation array A such that A1i j = 1 if worker i and worker
j are members of the same couple and single-column location attribute
matrix R containing the wage rank of each job (as with the columns of
Q). We do not posit any alignment effects for this particular, model and
hence this completes our specification of t.

To get a sense of the behavior of the location model, we begin
by demonstrating some of the job assignments that can arise under
various parameter values. Figure 1 depicts simulated draws from the lo-
cation model under a variety of conditions. Initially, we shall limit our
consideration to configurations arising from manipulation of the dis-
crimination (α1) and (anti-)segregation (β) parameters, with all other
parameters held to 0. For each choice of parameter values, the cor-
responding panel of Figure 1 shows 250 Metropolis draws from the
associated model; these were uniformly thinned (i.e., subsampled) from
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FIGURE 1. Location model draws, job assignment model.

a total of 25 million draws in each case, following a (discarded) burn-in
sample of size 200,000. Jobs (ordered by wage rank) are shown on the
vertical axis, with occupant gender indicated by color (light corresponds
to male). For ease of reference, job category boundaries are shown by
horizontal dashed lines; thus the gender composition of each category
may be determined by examining the fraction of light versus dark cells
between the appropriate lines for a given vertical slice.

Parameter values for each panel of Figure 1 are interpreted as
follows. α1 effects for all panels parametrize the strength of association
between gender and wage, with positive values reflecting a stronger
tendency to sort males into high-ranking wage positions. Thus α1 acts
as a discrimination parameter. (Negative α1 values reverse the sorting
direction but produce otherwise identical results; only positive values are
considered here.) The object homogeneity/heterogeneity parameter, β,
reflects the tendency of jobs within the same occupational category to be
occupied by persons of the same gender (i.e., occupational segregation).
As per equation (9), β < 0 indicates a tendency toward segregation
(homogeneity), while β > 0 indicates a tendency toward desegregation
(heterogeneity). Zero values for any parameter imply an absence of the
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corresponding sorting effect. Thus (α1, β) = (0, 0) results in a null model
of uniform assignment.

Examination of the panels of Figure 1 hints at the diversity of
configurations that can result from even a small number of interacting
regimes. Panel 1 displays the baseline condition of random assignment:
men and women appear across the spectrum of wage ranks, in essen-
tially even numbers. The remaining panels show various types of sorting
by gender, reflecting an interaction of segregation and discrimination
effects. Panel 2, for instance, depicts a “block random” pattern, in which
men and women are concentrated into uniform blocks which are oth-
erwise randomly allocated across the wage ordering. Panels 3 and 4, on
the other hand, show a clear pattern of stratification, in which men tend
to be sorted into higher wage positions. What accounts for these pat-
terns? Clearly, sorting by gender is driven by α1 and is only observed for
samples in which α > 0. Heterogeneity within occupational categories is
controlled by β, however and hence can act in ways which are distinct of
discrimination per se. In Panel 2, for instance, we have pressure toward
homogeneity/segregation (β < 0), which tends to force each occupa-
tional category to collapse into a single preferred gender. Since the model
is here indifferent to which gender occupies any given occupational
category, however, there is no net tendency for men or women to be
sorted into higher-wage positions. By contrast, Panel 4 illustrates the
interaction of a strong wage discrimination effect with a powerful ten-
dency toward heterogeneity/antisegregation (β > 0). While the former
effect seeks to sort men into high-wage positions and women into low-
wage positions (as in Panel 3), the latter resists the accompanying ne-
cessity of producing gender-homogeneous occupational categories. The
result is a structural “compromise,” in which an overall gender/wage
gradient is somewhat attenuated by the inclusion of both genders within
each occupational stratum. Interestingly, the impact of the discrimina-
tion parameter on variation within occupational categories creates a
tendency to reproduce a miniature version of the male/female wage
gradient inside each occupational category; thus the well-known ten-
dency for macrolevel stratification patterns to reproduce themselves at
multiple levels is shown here to be an emergent property of the interac-
tion of a global sorting process (here, discrimination) with mechanisms
favoring local heterogeneity (here, an antisegregation effect).

In addition to the general types of configurations found under
different assignment regimes, it is useful to consider the quantitative
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FIGURE 2. Gender difference in mean wage rank, discrimination, and merit effects.

impact of model parameters on outcomes of interest. In the present case,
consider the difference in mean wage rank by gender. By construction,
discrimination effects must lead to an exaggeration of such differences,
but these effects must interact with other processes as well. For instance,
in a competitive labor market, we generally expect workers with greater
human capital to obtain positions with higher wage rates. Depending
on the relationship between human capital and gender, this interaction
may strengthen or weaken inequality in wage attainment. An example
of this well-known phenomenon is shown in Figure 2, which presents
differences in mean wage rank (by gender) for the location model with
α effects for discrimination (gender by wage) and merit (human capital
by wage).5 As the figure clearly shows, the impact of discrimination is
attenuated by merit effects where human capital is uncorrelated with
gender. In addition to weakening the local impact of mild discrimi-
nation (i.e., |α1| small), this attenuation softens the transition from a
mixed-wage environment to a “frozen” environment in which wages

5 For these simulations, β = γ = 0, means are based on 750 Metropolis
draws uniformly thinned from samples of 750,000, after a burn-in period of 100,000
draws.
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FIGURE 3. Gender difference in mean wage rank, discrimination, and segregation effects.

are strictly stratified by gender. In the absence of competing factors,
even a fairly small amount of discrimination is adequate to lock the
system into a stratified state; an intervention with the intent of inhibit-
ing stratification by reducing discrimination is thus unlikely to prove
effective unless discrimination can be tightly controlled. To draw on a
physical analogy, it may be noted that the effect of 1/α is directly anal-
ogous to a temperature parameter (as pointed out in other exponential
family contexts by Strauss [1986] and Robins et al. [2005]). The strati-
fication system “solidifies” at fairly low temperatures (|α| large) and is
thus difficult to force into other, less stratified, states by modest changes
in discrimination alone. By contrast, an intervention that attempts to
inhibit stratification by introducing selective factors uncorrelated with
gender could prove effective even with relatively high levels of residual
discrimination (by lowering the relevant “melting point”). While it is
perhaps intuitive that the introduction of competing selective factors
would attenuate discrimination, the quantitative impact of these effects
is particularly clear under the location system model.

If human capital effects are inhibitory of stratification in our
scenario, what of segregation? Removing the human capital effect and
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adding in a β effect for gender segregation by occupational category
yields the wage rank difference relationship of Figure 3.6 The impact
of segregation on stratification is both clear and striking: segregation
strongly exacerbates discrimination, while desegregation mildly inhibits
it. The mechanism involved is a combination of those observed in
panels 2 and 3 of Figure 1—namely, the tendency of gender-typed job
categories to be “sorted” by wage in the presence of a background dis-
crimination effect. The net effect is a substantially higher degree of
stratification than would be obtained by discrimination alone. Deseg-
regation pressure, by contrast, reduces the extent to which high or low
wage categories can become male or female dominated, thereby “flat-
tening” the wage distribution (as was seen in panel 4 of Figure 1). In-
terventions such as affirmative action programs can be understood as
acting through mechanisms of this type; interestingly, Figure 2 would
seem to suggest that most of the impact of such interventions is likely
to come through the elimination of active segregation pressure rather
than through pressure for desegregation per se.

While occupational segregation is a factor of obvious impor-
tance for stratification outcomes, a less well-studied issue is the impact
of within-couple inequality on macroscopic wage differences. Effects as
diverse as social influence (Freidkin 1998), homophily on unobserved
characteristics (McPherson et al. 2001), and diffusion of opportunity
through social ties (Calvo-Armengol and Jackson 2004) can potentially
lead to a net tendency for similarity of within-couple wage rates; on the
other hand, mechanisms such as market/home production specializa-
tion (Becker 1991), normative pressures for intensive parenting (Jones
and Brayfield 1997), and the like can generate pressure for heteroge-
neous wage rates. To explore this within the location system model, we
repeat the simulations of Figure 3, replacing the β effect with a γ ef-
fect for couple-level wage homogeneity/heterogeneity. The results are
shown in Figure 4. As might be expected, heterogeneity pressure exac-
erbates discrimination. The effect, however, is slight and the marginal
impact declines rapidly in γ . By contrast, the impact of couple-level
homogeneity is profound: even a small amount of within-couple homo-
geneity pressure virtually eliminates the impact of discrimination, even
when the latter is exceedingly strong. By tying together the fortunes of

6 All simulation runs for Figures 3 and 4 were conducted in the same
manner as those for Figure 2.
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FIGURE 4. Gender difference in mean wage rank, discrimination, and couple-level
homogeneity effects.

individual men and women, couples can act to counteract large-scale
selection pressures toward wage inequality.

While these simulation results merely scratch the surface of what
is possible when using the location system to model occupational in-
equality, they nevertheless suggest some interesting and nonobvious
effects. Of particular import is the relative power of couple-level homo-
geneity effects in suppressing labor market discrimination, a finding that
suggests a stronger connection between processes such as mate selection
and marital bargaining with macrolevel stratification than might be sup-
posed. The exacerbation of discrimination effects by segregation is also
noteworthy, along with the somewhat less powerful inhibiting effect
of active desegregation. These phenomena highlight the importance of
considering dependencies—both among individuals and among jobs—
when modeling inequality in labor market settings. Such effects can be
readily captured by the location system, facilitating a more complete
theoretical and empirical treatment of stratification within the occupa-
tional system.
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4.2. Settlement Patterns and Residential Segregation

Another domain of long-standing interest to sociologists, geographers,
and economists has been the role of segregation within residential settle-
ment patterns (Schelling 1969; Bourne 1981; Massey and Denton 1993;
Zhang 2004). Here, we illustrate the use of the location model on a sim-
plified settlement system involving 1000 households (objects) allocated
to regions on a uniform 20 by 20 spatial grid (locations). Unlike the job
allocation system described above, this system places no occupancy con-
straints on each cell; however, “soft” constraints may be implemented
via density dependence effects. For purposes of demonstration, each
household is assigned a random “income” (drawn independently from
a log-normal distribution with parameters 10 and 1.5) and an “eth-
nicity” (drawn from two types, with 500 households belonging to each
type). Households are tied to one another via social ties, here modeled
simply as a Bernoulli graph with mean degree of 1.5. The Bernoulli
graph is a random structure in which ties between actors are indepen-
dent and it is commonly used as a simple null model of network structure
(Anderson, Butts, and Carley 1999). Regions, for their part, relate to
one another via their spatial location. Here, we will make use of both
Euclidean distances between regions and Queen’s contiguity (for pur-
poses of segregation). To obtain interregional distances, we treat each
location as a 1 unit by 1 unit square planar region and take Euclidean
distances between centroids; household position is modeled only up to
the cell level, in analogy with data observed at the level of areal units
such as census tracts. Similarly, two regions are considered to be con-
tiguous under the Queen’s rule if they border one another at either a
point or an edge. Finally, each region is also assigned a location on a
“rent” gradient, which is proportional to the inverse square of centroid
distance the region in question to the center of the grid.

With these building blocks, a number of mechanisms can be ex-
plored. An obvious attraction/repulsion effect that plays an important
role in household settlement patterns is the tendency for low-income
households to “avoid” (or be excluded from) high-rent areas. In our
case, this is equivalent to an attraction effect between household in-
come and location rent level and hence we model it via a statistic tα

based on a single vector object feature matrix X containing household
incomes and a single vector location feature matrix Q containing loca-
tion rent levels. Ethnic segregation—a tendency for households to avoid



GENERALIZED LOCATION SYSTEMS 331

settling in areas dominated by households of different ethnicity—is a
form of object heterogeneity and it is captured here by a single statistic
tβ formed from the interaction of a single-column matrix of dichoto-
mous ethnicity codes (Y) and a dichotomous B array such that B1i j = 1
if region i is contiguous with region j (using the Queen’s contiguity rule,
as noted above). Although we do not posit any location heterogeneity
effects in the present case, we consider two alignment statistics. The
first is a crowding, or density dependence effect. To define the statis-
tic associated with this effect, we let the object-object relational feature
matrix W1·· be a matrix containing only 1s and the location-location re-
lational feature matrix D1·· be the identity matrix (i.e., a matrix with 0s
on off-diagonal cells and 1s on the diagonal). The sufficient statistic tδ

1
formed by these matrices is then equal to the sum of squared population
sizes for each location and serves to parametrize pressures toward (or,
for δ1 < 0, against) crowding. The second alignment statistic, negative
propinquity, expresses a tendency for households that are socially tied
to one another to reside in spatially distant locations. (We use the term
“negative” propinquity here to emphasize that the natural alignment
statistic technically measures the inverse of propinquity in its usual
sense; δ2 < 0 thus generates pressure toward propinquity per se.) To
form the negative propinquity statistic, we simply let W2i j = 1 if house-
hold i is tied to household j (and 0 otherwise), with D2i j being equal
to the Euclidean distance between the ith and jth regions. This gives
us our second tδ statistic and completes our specification of t for this
model.

Several examples of configurations resulting from the above
mechanisms are shown in Figure 5. Each panel shows the 400 regions
comprising the location set, with household positions indicated by cir-
cles. (Within-cell positions are jittered for clarity.) Household ethnicity
is indicated by color and network ties are shown via edges. While each
configuration corresponds to a single draw from the location model,
a burn-in sample of 100,000 draws was taken (and discarded) prior to
sampling. Configurations shown here are typical of model behavior for
these covariates and parameter values.

The panels of Figure 5 nicely illustrate a number of model fea-
tures. In Panel 1, a model has been fit with an attraction parame-
ter based on an interaction between rent level and household income
(α = 0.0001), balanced by a negative density dependence parameter
δ1 = −0.01. Although the former effect tends to pull all households
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FIGURE 5. Location model draws, spatial model.

toward the center of the grid, the density avoidance effect tends to
prevent “clumping.” As a result, high-income households are prefer-
entially clustered in high-rent areas, with lower-income households dis-
placed to outlying areas. Note that without segregation or propinquity
effects, neither ethnic nor social clustering are present; this would not be
the case if ties were formed homophilously, and/or if ethnicity was cor-
related with income. Clustering can also be induced directly, of course,
as is shown in panel 2. Here, we have added an object homogeneity effect
for ethnicity through Queen’s contiguity of regions (β = −0.5), which
tends to allocate households to regions so as to reduce local hetero-
geneity. As can be seen, this induces strong ethnic clustering within the
location system; while high-income households are still preferentially
attracted to high-rent areas, this sorting is not strong enough to over-
come segregation effects. Another interesting feature of the resulting
configurations is the nearly empty “buffer” territory that lies between
ethnic clusters. These buffer regions arise as a side effect of the conti-
guity rule, which tends to discourage direct contact between clusters.
As this suggests, the neighborhood over which segregation effects op-
erate can have a substantial impact on the nature of the clustering that
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results. This would seem to indicate an important direction for empirical
research.

A rather different sort of clustering is generated by adding a
propinquity effect to the original attraction and density model. As noted
earlier, we implement propinquity as an alignment effect between the in-
terhousehold network and the Euclidean distance between household
locations (δ2 = −1). As one might anticipate, the primary effect of
propinquity (shown in Panel 3 of Figure 5) is to pull members of the
giant component together. Since many of these members also happen to
be strongly attracted to high-rent regions, the net effect is greater popu-
lation density in the area immediately surrounding the urban core. An-
other interesting effect, however, involves households on the periphery:
since propinquity draws socially connected households into the core, pe-
ripheral households are disproportionately those with few ties and/or
which belong to smaller components. The model thus predicts an asso-
ciation between social isolation and geographical isolation. Ironically,
this situation is somewhat attenuated by the reintroduction of a residen-
tial segregation effect (Panel 4). While there is still a tendency for social
isolates to be forced into the geographical periphery, the consolidation
of ethnic clusters limits this somewhat. Because ties are uncorrelated
with ethnicity, propinquity also acts to break the settlement pattern
into somewhat smaller, “band-like” clusters with interethnic ties span-
ning the intercluster buffer zones. (One would not expect to observe
this effect in most empirical settings, however, due to the strong ethnic
homophily of most social ties (McPherson et al. 2001).)

Quantitative information on the interaction between propinquity
and segregation can be obtained by simulating draws from the location
system with systematically varied parameters. Figure 6, for instance,
shows the average value of the heterogeneity statistic for ethnicity dif-
ference by Queen’s contiguity (tβ) as a function of (anti-)segregation
(β) and (negative) propinquity (δ2) effects. (Each data point represents
a mean of 500 Metropolis draws uniformly thinned from a total sample
of size 100,000, with a burn-in of 20,000 draws. All other parameters
have been set to 0.) In the absence of a propinquity effect, the loca-
tion system undergoes a sharp behavioral transition at β = 0; extreme
homogeneity is observed below this threshold, with high levels of het-
erogeneity immediately above it. While propinquity seems to have little
effect on heterogeneity in the segregated regime, its effect in the deseg-
regated regime is uniformly inhibitory. Whether positive or negative,
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propinquity effects tend to weaken heterogeneity (with stronger effects
being observed in the dispropinquitous case). This phenomenon stems
from the fact that propinquity affects which actors can be clustered to-
gether, with dispropinquitous systems tending to force large numbers of
actors to remain in different locations. Such constraints make it more
difficult to maximize local heterogeneity, which is most easily accom-
plished by the formation of dense, ethnically diverse clusters. Although
the positive β, δ2 regime may seem unlikely to arise in most residen-
tial contexts, it may still appear in related contexts such as firm siting,
in which firms benefit from a heterogeneous market environment but
simultaneously seek to avoid being placed too close to competitors. In-
teractions such as those of Figure 6 may thus have implications for
the appearance and survival of locally competitive markets in a spatial
context.

In addition to clustering, segregation has implications for pop-
ulation density. This is clearly illustrated by Figure 7, which shows the
mean concentration statistic (tδ

1) formed by the alignment of the iden-
tity matrix on locations with the complete graph on objects. (Simula-
tions for this figure are as for Figure 6, with concentration replacing
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propinquity.) As the figure shows, population distribution for the lo-
cation system tends toward one of two regimes: a highly concentrated
regime (in which most households are packed into a very small num-
ber of regions) and a diffuse regime (in which households tend to be
widely dispersed). Transitions between these regimes are moderately
abrupt, with some additional consolidation occurring within the high-
concentration regime for increasing δ1. While we might at first imagine
that segregation would enhance population concentration, this is not
the case. Rather, segregation inhibits population concentration, with
desegregation actively promoting it. Intuitively, this is due to the fact
that the corresponding heterogeneity statistic can be most effectively in-
creased by placing a diverse population within a small area. By contrast,
concentrated, segregated population distributions are relatively difficult
to produce (since any heterogeneous “incursions” are amplified by the
local population level). As this implies, inhibition/promotion does not
manifest here through an alteration of the extremity of the two regimes;
instead, segregation effects shift the concentration “temperature” at
which the transition occurs. Such a result is suggestive of the behavior
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of binary mixtures (particularly eutectic mixtures), which can solidify at
temperatures that differ greatly from those of their constituents (Kittel
and Kroemer 1980).

As Schelling (1969) long ago noted, even mild tendencies toward
local segregation can result in residential segregation at larger scales.
While the location system model certainly bears this out, the model
also suggests that factors such as population density and interhouse-
hold ties can interact with segregation in nontrivial ways. Using the
location system framework, such interactions are easy to examine and
the strength of the relevant parameters can be readily estimated from
census or other data sources. It is also a simple matter to introduce ob-
jects of other types (e.g., firms) that relate to households and to each
other in distinct ways (as represented through additional covariates). In
an era in which geographical data is increasingly available, such capa-
bilities create the opportunity for numerous lines of research.

4.3. Empirical Example: Lazega’s Lawyers

As a final sample application, we here demonstrate the use of location
system models in an empirical context. The data for this example comes
from Lazega’s (2001) study of a midsized U.S. corporate law firm. The
relevant population of the firm consists of 71 lawyers, for whom gender,
tenure within the firm, age, specialty (litigation versus corporate), and
law school background (here Ivy-league versus non-Ivy) are measured.
Lazega also reports on relationships among the lawyers in question,
of which we will here use attributions of friendship. Positions within
the firm vary on two salient dimensions: seniority level (associate ver-
sus partner) and office (three work sites being present). While Lazega
considers this case in great depth, the present analysis will be limited
to a simple analysis of the factors associated with position occupancy
within the firm. Like the other examples provided here, its purpose is
more illustrative than substantive.

In studying actors’ positions within the firm we will condition
on the composition of both the actor and location populations; � is
thus taken to be a 1:1 mapping and C to be the set of permutations
on o1, . . . , o71. We initially hypothesize that the attraction/repulsion
of actors to positions is governed by the interaction of the five indi-
vidual attributes with position seniority. X is thus composed of these
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five attribute vectors (in columns), with dichotomous coding for gender
(male = 1), specialty (corporate = 1), and law school (Ivy = 1). Since
Q involves only one variable, it is composed of five identical columns
(with Qi j being the seniority of l i , partner coded as 1). In considering
potential object heterogeneity effects, one obvious possibility is a ten-
dency toward gender segregation by work site; to test for this, we posit
an object heterogeneity term with object attribute matrix Y consisting
of a column matrix of gender codes and location adjacency matrix B
coded dichotomously such that B1i j = 1 if positions l i and l j are at
the same work site. In addition to object heterogeneity effects, we also
note the possibility of location heterogeneity within the firm. One obvi-
ous effect of this type is the potential for friendships to be stratified by
seniority—that is, for friends to occupy the same strata within the firm.
Such an effect can be captured by a location heterogeneity term whose
object relation matrix, A, is the adjacency matrix of the friendship net-
work and whose location attribute matrix R is a single vector of position
seniority codes. Finally, we conjecture (per Lazega) that there will be a
net tendency for friendship to align with work site co-membership. This
is modeled via an alignment statistic whose W matrix is the adjacency
matrix for the friendship network and whose D matrix is coded as B
above.

To fit the location system model to the Lazega data, we em-
ploy the moment-matching method of Section 3.4. Initial parameter
estimates were obtained using the permutation MPLE and were itera-
tively refined until the Euclidean distance between the mean simulated
statistics and the vector of observed statistics was less than 0.1. Means
for convergence testing were taken from a sample of 3000 Metropolis
draws, uniformly thinned from a total sample of size 6,000,000, and
20,000 burn-in draws were taken (and discarded) before taking sample
draws from each chain. A sample from the (converged) MLE was also
used to estimate the deviance for each tested model (per Section 3.3.1).
The deviance estimate was then used to compute the corresponding AIC
scores, with model degrees of freedom equal to the number of included
statistics (and hence parameters).

To assess the general properties of the assignment system, we
begin by fitting each of our four effect types to the data as separate
blocks. Parameter estimates and goodness-of-fit information for each
such model are shown in Table 2, together with equivalent statistics for
the null model of random assignment and a model containing all effects
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simultaneously. Under random assignment, each assignment vector �

has an equal chance of being observed and hence the data likelihood
under this model is fixed at (n!)−1. Adding parameters improves fit,
at the cost of parsimony—thus, models should be compared via the
AIC (which penalizes the deviance by the number of parameters) for
purposes of model selection. To provide some additional sense of the
differences in fit, p-values are also provided for a standard χ2 test of
improvement in deviance versus the null model. Given that the usual
asymptotic argument for the χ2 as a reference distribution when com-
paring nested regular exponential family models (e.g., Johansen 1979) is
not immediate in this case, these p-values should be interpreted heuris-
tically; they nevertheless provide some baseline against which to assess
quantitative differences in fit.

An examination of Table 2 reveals that all of the effect blocks
other than object heterogeneity appear to have nonnegligible marginal
effects, in the sense that each model is preferred to the null model un-
der the AIC. (These differences in fit are also large compared to a χ2

baseline, as indicated by the associated p-values.) The strongest effect
per parameter clearly occurs for the location heterogeneity effect, fol-
lowed by the alignment and attraction/repulsion effects (respectively).
By contrast, object heterogeneity appears to have little impact on the
assignment process, resulting in no significant improvement in fit (as as-
sessed either by AIC or the χ2 reference distribution). This immediately
suggests that the dominant relationships within this position system are
the tendency for lawyers to be tied to others of similar seniority and for
friendships to coincide with shared work sites. Weaker (but still promi-
nent) influences involve general tendencies for lawyers with particular
attributes to be assigned to more (or less) senior positions; on the other
hand, it does not seem to be the case that assignment within work sites
is gender-homophilous.

For a closer look at the properties of the location system, we turn
to the parameter estimates of Table 2. Point estimates for each fitted
model are shown in two columns, containing the maximum pseudo-
likelihood and maximum likelihood estimates for each included param-
eter (respectively). As expected, the MPLEs are generally in the neigh-
borhood of the MLEs for these models (with sign changes observed
only for small-magnitude coefficients). On the other hand, it is immedi-
ately evident from inspection of the estimates that the MPLEs are more
extreme than the MLEs, being of greater absolute magnitude in 13 of 16
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cases. This extremity bias results from the fact that the MPLE considers
only the local information involved in pairwise exchanges and hence un-
derweights the impact of parameters on assignment arising from higher
order dependence. The phenomenon is a fairly general one, although
the effect is exacerbated for systems with stronger dependence among
positions.

With regard to the estimates themselves, many of the effects are
immediately intuitive. Men and those with long tenure within the firm
are more likely to be found in senior positions (even controlling for
relational effects). Friendship is homophilous by seniority and propin-
quitous by work site, as demonstrated by the consistently negative lo-
cation heterogeneity and positive alignment parameters (respectively).
A more subtle set of influences are clearly at work with the effects of
age, specialty, and school, whose parameter estimates reverse once the
effects of friendship are controlled for. Marginally, workers who are
older, who specialize in corporate law, and who attended an Ivy-league
school are more likely to be found in senior positions. When control-
ling for interpersonal relationships, however, we find that the impact
of age and school diminish by more than an order of magnitude, con-
tributing little to the relative probability of assignment. Specialty, on
the other hand, both reverses sign and increases dramatically: control-
ling for relational effects, specialists in corporate law are actually less
likely to be found in senior positions than would be expected under a
“neutral” assignment process. This phenomenon appears to result from
the strong tendency of friendship ties to be homophilous by both le-
gal specialty and seniority (QAP p ≤ 0.0001 for both relationships). We
here condition on the former relationship (both specialty and friendship
being object features) and controlling for the second (via tδ) leads to a
model in which seniority status, ceteris paribus, should tend to be heavily
clustered by specialty. Given this relationship (and the coincidence of
specialization with other attributes), the observed rate at which corpo-
rate law specialists occupy senior positions is below that which would
be otherwise expected. Whether this is causal is not trivial to determine
from cross-sectional data, but the location system model allows us to
identify such relationships for possible future examination. As Mayhew
and Levinger (1976) famously note, marginal relationships can be very
misleading in the presence of strong baseline effects resulting from struc-
tural biases; the location system allows us to detect and control for many
such interactions.



GENERALIZED LOCATION SYSTEMS 341

As a final comment, it should be noted that the magnitudes of
many of the effects estimated here are fairly substantial. Given a pair
of lawyers of which one is male and the other female, of whom one
occupies a senior position, the odds of finding the male (rather than
the female) in the senior position are approximately four times what
they would be if both individuals were of the same gender. That this
effect is retained even when controlling for firm composition, basic co-
variates, and relational structure clearly suggests the presence of gender
discrimination in hiring or promotion, although a more extensive anal-
ysis would be desirable to rule out alternative explanations. Likewise,
each year of tenure difference within a pair increases the relative odds
of the longer-tenured individual “beating out” a more recent hire for a
senior position by approximately 70 percent. Since the average tenure
difference within this firm is 10.48 years, this effect can be profound —
at the mean tenure difference, the odds of an “upset” given otherwise
identical contenders for a senior position are reduced by a factor of
over 250! Similarly, our strong estimates for γ and δ suggest that the
odds of observing a potential move that increases the net number of
mismatches of friendships by work site or seniority versus some base-
line configuration are reduced by a factor of 40 percent to 50 percent
(respectively) per net discordant edge. Of course, all things are rarely
equal and the exact probability of observing any given configuration
will depend on the interaction of multiple factors. Nevertheless, it is im-
mediately apparent that the occupancy of positions within this firm is
highly structured by both demographic and relational forces. Parameter
estimates such as those shown here allow us to determine the strength
and direction of those forces by exploiting structural signatures in the
observed data. These estimates, in turn, can serve as the basis for subse-
quent simulation (e.g., to perform “what-if” analyses of firm structure
under hypothetical perturbations), theory building (e.g., by mapping
the estimated social potential onto a process such a potential game), or
theory testing (e.g., by comparing the estimated parameters with those
predicted by competing theories).

5. CONCLUSION

We have shown a general framework (the generalized location system)
that can be used to characterize a range of social systems. An exponential
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family of distributions was developed for modeling such systems, allow-
ing for the incorporation of both attributional and relational covariates.
This family belongs to a class of distributions that are well-known in
the statistical literature (the regular exponential families) and it also has
strong parallels with models developed for physical systems. Drawing
on these established results, methods were shown for simulation and
inference using the location system model. Three illustrative applica-
tions (occupational stratification, residential settlement patterns, and
position occupancy within a law firm) were presented and simulation
or inference was employed to show the potential utility of the location
system model in each case. While there are a number of issues that have
been treated here briefly or not at all—including dynamics, compatibil-
ity with low-level mechanisms, and endogenization of covariates—the
material presented is sufficient to permit deployment of location system
models in a wide range of empirical contexts. It is hoped that by cross-
applying tools from other domains, the location system will allow for a
more thorough and general treatment of complex problems than could
be obtained using domain-specific methods.
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