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Dear fellow participants in the Quantifying Social Fields Conference, 

I am pleased to provide the attached paper (presented just last week, on April 4, at the 

International Studies Association annual meeting) as “read-ahead” material for the paper I will 

be presenting in Berkeley on April 20-21 on behalf of my research group. Here is what we think 

we are doing that is new. 

We are developing a “dual” to regression analysis, one in which the key results of the 

regression (including the partial regression coefficients and the predicted values on Y) may be 

seen to depend on the cases. This allows us to use the variables to learn about the cases, 

whereas the standard use of regression analysis is to make the cases invisible, and to discuss 

only the relations among the variables (see also Shalev 2007 for a critique of the use of 

regression analysis in the comparative study of welfare states). Unlike many critics of “general 

linear reality” (Abbot 1988, and, subsequently, many other critics), we do not want to overturn 

regression modeling. To the contrary, we want to get more out of it. We do so by recognizing 

foundations of regression modeling in “spaces” similar to those used by practitioners of case-

oriented techniques (Ragin, 2008), multidimensional scaling (Shalev, 2007), field theory, and 

correspondence analysis (Le Roux and Rounet, 2004). 

Research on network modeling, and insights from sociological field theory, may be applied to 

the network among the cases, and to a dual cases-variables network that, as we show, 

underlies the usual regression modeling. Doing so leads to new discoveries about the 

organizational and relational underpinnings of regression models and their applications. Your 

comments are most welcome. 

Sincerely, 

Ron Breiger 
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Application of a Profile Similarity Methodology to Leverage Open Source Data 

on CBRN Activities of Terrorist Groups 

 

Ronald L. Breiger, David Melamed, and Eric Schoon 

University of Arizona 

 

1. From Information to Analysis 

 Important studies of terrorist social network connections have been conducted on full 

network data (“who-to-whom” and “who-to-what”) derived from open sources (e.g., Krebs, 

2001; Pedahzur and Perliger, 2009; Roberts and Everton, 2011; Rodriguez, 2005; at the level of 

states, see Asal et al., 2012). Nonetheless, in many situations information on the ties among 

terrorists is notoriously “incomplete, inaccurate or simply not available” (Tsvetovat and Carley, 

2005; see also Hayden, 2009; Sparrow, 1991). One highly productive reaction has been to focus 

on computational modeling in order to understand behavior on the basis of simulated terrorist 

networks (e.g., Tsvetovat and Carley, 2005).  In this paper we pursue a different strategy, making 

use of database information on actual groups and some of their known behaviors and attributes.  

As Perliger and Pedahzur (2011) point out, there has been “a striking increase in efforts 

and resources invested in data collection” on terrorist groups in recent years by academic and 

governmental agencies. Particularly notable in this respect have been the open-source, publicly 

available databases maintained at the START Center at the University of Maryland, resulting in 

the present availability of “high-resolution” information (see also Hayden, 2009).  

Among the newest databases produced by the START Center is POICN, the Profiles of 

Incidents involving CBRN by Non-state actors. Described in greater depth in a paper presented 
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at this panel (Ackerman and Pinson, 2012), the START researchers began with 499 potential 

cases drawn from currently existing databases. They created 142 core variables relating to the 

geo-spatial, temporal, motivational, operational, and tactical consequence aspects of each CBRN 

incident.  (CBRN pertains to chemical, biological, radiological, or nuclear weapons.) Of 

particular interest to researchers: Most of the core variables in the POICN database  feature 

measures for validity, thus allowing researchers to explore the effects on their model coefficients 

of using varying standards for how credible an event description needs to be in order to be 

included. 

We make use of 181 incidents in the POICN database related to CBRN attempted attacks 

and successful attacks. We show how a form of modeling often used by social network analysts 

can be applied to leverage information in distinctly new ways from databases on terrorist 

activities. Specifically, we derive network connections from profile similarities among incidents 

in this database. In the process we shed new light on the conventional regression modeling that 

has been a main mode of analysis in political science, sociology, and throughout international 

studies. 

2. Context and Research Questions 

Given the absence to date of a true mass-casualty WMD attack by terrorists, what can be 

gained be examining empirical evidence from the broader category of CBRN weapons use? We 

would put forward two reasons for an interest in the types of attack detailed in the POICN 

database. First, uses and attempted uses even of minor quantities of CBRN materials or in plots 

resulting in no deaths and in minor damage can still provide an indication of planning and / or 

evolving capabilities that could lead to more consequential operations. Second, small-scale use 

can blur the line between CBRN and conventional weapons use with respect to what is 
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acceptable to perpetrators (cf. Schelling’s classic analysis, 1960, on a different plane: 

maneuvering among Cold War nation states over definitions of what constitutes a WMD 

activity). 

The outcome variable upon which we focus is the total number of all individuals who 

died as a direct result of a CBRN event. Of the seven CBRN event types coded in the database 

(ranging from proto-plots, plots, and attempted acquisition all the way up to use of an agent), the 

number of deaths is coded only for events involving the actual or attempted use of an agent. The 

number of events involving actual or attempted CBRN use was 186 (reduced to 181 after cases 

exhibiting missing data on the predictor variables were excluded). The vast majority of these 

events (about three-fourths of them) resulted in no deaths; 43 events resulted in from 1 to 200 

deaths each.  

In our frankly exploratory analysis we made use of a range of predictor variables drawn 

from the database that might reasonably be related to the total number killed in an event. We 

included type of agent (whether chemical, biological, or other), other attack characteristics 

(whether each event was primarily an assassination attempt, aimed at holding hostages to gain 

political concessions, featured use of explosives), and characteristics of perpetrators (whether 

some level of the CBRN agent was produced “in house,” and whether the perpetrators included a 

cult, a religious extremist group, a one-issue group such as environmentalism, a lone individual 

or cell not linked operationally to other groups, or an ethno-nationalist group, or some other type 

of group). Table 1 provides brief descriptions of these variables as well as means (and standard 

deviations) or proportions. 

TABLE 1 ABOUT HERE 



 
 

4 
 

 In a conventional multivariate study we would pose our central research question as 

follows:  

RQ1: Which variables (which combinations of attack characteristics and perpetrator 

characteristics) best predict the lethality of attacks?  

Indeed we are interested in that question. In addition, however, our research questions move 

beyond a focus on how variables relate to other variables. We are also interested in how we can 

use the variables to learn about the cases (the CBRN events). Thus we also formulate 

RQ2: Identify clusters of cases that have distinctive patterns of contribution to the 

regression coefficients of the standard regression model. What are those distinctive 

patterns, and what can we learn from the multiplicity of these patterns about “different 

CBRN stories” (i.e., distinctively different patterns of regression coefficients within the 

overall regression model)? 

3. Analysis: Conventional Regression 

 As mentioned above, about three-fourths of our 181 events exhibit zero casualties. The 

appropriate model to use with these data is a zero-inflated Poisson model (Gelman and Hill, 

2007, pp. 126-27). However, in order to focus this presentation of results on the innovations of 

our approach, we illustrate an application of ordinary multiple regression (OLS) after having 

transformed all variables to standard form (mean of 0, standard deviation of 1). Although it is not 

a realistic model for these data, at least OLS is fairly robust. We will demonstrate how we can 

gain insight even from application of the most basic regression model. 
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 Linear regression coefficients are given in Table 2. The adjusted R-square is a fairly 

modest .10 across the 181 cases. Results indicate that events whose perpetrators are cult 

members have 26.8 more deaths on average (standardized coefficient = .385, p = .002), net of the 

other variables in the model. Hostage-taking also leads to increased deaths (72.4 additional 

deaths; standardized coefficient = .220, p = .003). Events in which a CBRN agent was produced 

“in house” have on average 18.2 fewer deaths, net of the other variables (standardized coefficient 

= -.275, p = .02), and events in which assassination is the primary aim have on average 12.2 

fewer deaths (standardized coefficient = -.172, p = .05).  Events that the POICN coders doubted 

were true cases of terrorism had on average 6.6 more deaths, net of the other variables 

(standardized coefficient = .133, p = .09).  Events involving explosives had 7.6 more deaths, net 

of other variables (standardized coefficient = .117), though this was not significant (p = .21). 

TABLE 2 ABOUT HERE 

The portrait drawn by these results suggests that the production of CBRN agents “in-

house,” and also the goal of assassination, are associated with fewer deaths. In the latter case, 

assassination (even when it is realized) typically kills one or a very small number of people, and 

in the former case, perhaps it is the smaller and less well-resourced groups that produce CBRN 

agents very locally. Conversely, hostage-taking and participation by cults, both of which lead to 

higher deaths, are both features of groups considerably more disciplined. The net association of 

cases the coders doubted to be terrorism with higher deaths per event (not quite a significant 

finding, p = .09) suggests that there is a consequential class of CBRN use that is different from 

terrorism. 
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Without in any way contradicting these results and findings, we now present our 

approach to turning the usual regression modeling “inside out” in order to focus on how these 

results concerning variables may be seen to depend on networks among the cases, which here 

are our 181 CBRN events. In contrast to the average effects given by the regression coefficients 

(reviewed above and in Table 2), we will identify multiple clumps of cases, each refracting the 

overall regression results in a distinctive way. This will lead us to a more nuanced interpretation 

of the effects of our predictors on the lethality of the events. 

4. Analysis: Turning the Regression “Inside Out” 

a) Motivation. Given a data matrix (cases by variables), regression analysis as well as 

many of its generalizations may be thought of as the study of relations among the variables. 

With its typical assumption that the “cases” are a random sample representative of a population 

of interest, regression analysis makes the cases invisible, as Michael Shalev (2007) and other 

analysts of comparative politics have argued in their critiques of regression approaches. 

But often the cases are of interest, and the goal of the analysis should be to use the 

variables to let the cases be seen. Shalev (2007) discusses analyses where the cases are countries, 

and the research agenda is comparative analysis of types of welfare states. In the example of the 

present paper, the cases are CBRN events, and our research agenda is comparative analysis of 

types of such events (discovering the types and how variables interact differently within each 

type). Moreover, in neither Shalev’s examples nor those of the present paper could the analyst 

claim that the cases are a random sample. The POICN database aims at collecting all known 

cases of CBRN events within its date range, and there are surely dependencies among the events 

along multiple dimensions. (For example, two attacks attempted by the same group in adjacent 
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months are likely not “independent” of each other. In addition, attacks using the same toxic agent 

by different groups but within the same country might well lack independence from one another. 

It seems quite limiting indeed to assume independence among all the cases.) We propose instead 

to discover regions of dependence among the cases on the basis of their attributes. Along with 

Shalev (2007), Charles Ragin (2008), and other researchers, we are willing to pay the costs of 

giving up our claim to “significance testing” in order to gain insight by more richly exploring the 

structuring internal to our dataset. Moreover, we show that we can do all this by deepening the 

framework within which regression analysis is conventionally understood. 

 b) Some formal shorthand. Consider an n × p data matrix (denoted X) whose rows 

represent each of the n cases (in our example, 181 CBRN events) and whose columns stand for 

the p predictor variables (p = 12 variables in standard form in our example). Assuming a 

continuous outcome variable, y (n × 1), matrix notation for the fitted values of y (denoted ) in 

the linear regression model is 

𝐲� = 𝐗 𝐛 (1) 

where b is a p × 1 vector of regression coefficients estimated by the ordinary least-squares 

criterion. We compute the singular value decomposition (SVD) of X, 

 =  (2) 

the point of which (for our purposes) is to produce (as the columns of U) a set of orthogonal 

dimensions pertaining to the rows of X (the terrorist organizations), and (as columns of V) a set 

of orthogonal dimensions for the columns of X (the predictor variables).  (Superscript T denotes 

matrix transposition.) S is a diagonal matrix of weights (singular values) indicating relative 

importance of each dimension. The regression coefficient, b, are often estimated as                                                   

 

ˆ y 

 

X

 

U S VT
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1( )−= T Tb X X X y  (3) 

but by substituting (2) into (3) we see that the identical regression coefficients may be written  

b = V S-1UTY 1 (4) 

where Y = diag(y) is a diagonal matrix of observed values on the outcome variable, and 1 is a 

vector of 1’s. 

 Equation (4) is interesting to us for two main reasons (Melamed et al., 2012). First, 

 V S-1UTY is of size variables by cases (p x n), and each of its rows reveals the contribution of 

each case to a given regression coefficient. We are unaware of other researchers who exploit this 

fact, and we will do so in discussion of our Table 3 below. 

 Our second source of interest in eq. (4) is, analogously to researchers who employ 

principal components regression (Gunst and Lee, 1980), the vector b of regression coefficients 

may be seen to be composed from a series of dimensions: 

bk = V[,1:k] S[1:k,1:k]-1U[,1:k]TY 1 (5) 

When k = p (the number of variables), equation 5 is identical to the previous one. But when 1 ≤  

k  < p, we have (by the least-squares principle, and in the sense of principal components 

regression) a “best” representation of the regression coefficients in the first k dimensions.  

 Going along with the above, we can see that 𝒚�, the fitted values of our outcome variable, 

are composed from a series of dimensions: 

U[,1:k] t(U[,1:k]) y = 𝒚�k (6) 

When k = p, eq. (6) becomes 

[U UT] y = 𝒚� (7) 
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The expression in brackets is a network among the cases (of size n x n) based on profile 

similarity (Breiger et al, 2011). Eq. (7) “says” that the predicted value from ordinary regression 

for (let us say) the first-listed case is identical to the sum of the observed value on Y of each 

case, multiplied by each (respective) case’s similarity to the first. Eq. (6) tells us that the 

predicted values on Y may be decomposed into best-fitting (in the sense of least-squares) 

components based on using the first k dimensions. 

 The correlation of 𝒚� with 𝒚�k (for k = 1, …, 12) is reported in Figure 1. The 12 

correlations reported there correlate -.94 with the diagonal of the S matrix (see eq. 2), suggesting 

the role of dimensions in decomposing the fitted Y-hat values. From Fig. 1 we see that using just 

the first dimension of the data produces 𝒚�k values that correlate .18 with 𝒚�, whereas using the 

first two dimensions produces a set of 𝒚�k that correlate .36 with 𝒚�. In the following, we will often 

use a two-dimensional representation of the regression model due to the simplicity of the two-

dimensional representation, but we will be mindful of how much of the regression model we are 

thereby leaving aside (i.e., the correlation of .36 is quite low; see Fig. 1.) 

FIGURE 1 ABOUT HERE 

 c) The regression model in 2 dimensions. We may adjoin 𝒚�2 (eq. 6) to the data matrix, 

X, and then compute the SVD on [X | 𝒚�] (of size n by p + 1). We use the notation U* to 

symbolize the resulting row space (compare eq. 2, the SVD on X alone). Each of the first p 

columns of U* is correlated perfectly with the corresponding column of U. A graph of U* and of 

V is given in Figure 2. Also shown there (labeled “Yhat2dim”) is 𝒚�2 (eq. 6), as well as 

projections of each variable to the line connecting 𝒚�2 to the origin of the graph (point (0,0)). 

FIGURE 2 ABOUT HERE 
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 One implication of Figure 2 is that, from it, we can read ratios of the regression 

coefficients (or, more precisely: their two-dimensional representations, 𝒚�2). For example, these 

two-dimensional regression coefficients for the variables CHEM (use of a chemical agent) and 

“ethNat” (a perpetrator from a group coded as ethno-nationalist) are .0626 and -.0073 

(respectively). We see that, in this two-dimensional representation of the model, use of a 

chemical agent has 8.0971 times the impact on total deaths as does an attack involving an 

assassination attempt ( .0626 / -.0073 = -8.0971; the signs imply that use of a chemical agent 

increases the casualty rate, while having a perpetrator from an ethno-nationalist group slightly 

decreases it). Looking in Fig. 2 at the distances of the projections of these variables from 

“Yhat2dim” gives exactly the same ratio. Specifically: the ratio of distances is (.5840 / .0721) = 

8.0971 also. Thus, pictures such as Figure 2 allow us to visualize the relative effects of 

regression coefficients on the dependent variable (given the dimensionality of the figure, in this 

case 2 dimensions). In this sense (and in others), pictures such as Figure 2 are “natural” adjuncts 

to standard regression modeling. 

 So what? The point of all this is that we see from Figure 2 that some clumps of variables 

“hang together” with respect to their net effects on Y, such as religious extremist groups and 

using explosives. Another clump that hangs together would seem to include cult groups and 

producing CBRN agents “in-house.” Moreover, these two sets of variables are far apart from 

each other. This suggests that clustering of the variables actually underlies the usual regression 

model, even though such thinking has (we believe) never been brought to bear in analyzing 

regression equations. And, the same applies to cases. 

 d) Cases in different regions of the regression space. A main motivation of our 

approach is to bring cases (CBRN events) and variables into the same “picture” of the regression 
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model space. To do so is to recognize (deductively) and to discover (inductively) that the 

regression space is often inhomogeneous. Consider for example POICN database case # 517. 

The POICN database narrative of this case reads as follows: 

In late November [1994], Aum Shinrikyo cult members Satoru Hirata, Yoshihiro Inoue Tomomitsu Niimi 
and Akira Yamagata attempted to assassinate Noboru Mizuno at his home in Nakano Ward, Tokyo, 
Japan (A, B).  Mizuno was helping deserters from Aum Shinrikyo escape and reportedly also tried to sue 
Aum, which made the cult want to get rid of him.  Hirata tried to spray VX nerve agent, from a syringe, 
on Hirata’s neck.  The attack was unsuccessful due to reasons most likely related to how the agent was 
made (A, B). Aum produced VX nerve agent  at one of their chemical laboratory facilities.  Shoko 
Asahara, cult guru, ordered the hit. The group made a second attempt on Mizuno’s life, also with VX, the 
following month (A, B).  The assassination attempt may not always be considered terrorism but rather 
seen as an assassination attempt to remove an obstacle that may have prevented Aum from achieving 
its goals. [Source: POICN database. Letters in parentheses such as (A,B) refer to sources given in the 
database record for this case.] 

 The POICN database coders saw in this narrative certain variables of interest: a cult 

group; a chemical agent; the production of that agent “in-house”; an attack that was primarily an 

assassination attempt; and doubt that the event was an act of terrorism. Please see Fig. 3, where 

the coordinates of this event (from matrix U, eq. 2 above) are given, along with connections of 

this event to the coded properties (from matrix V of eq. 2).  

FIGURE 3 ABOUT HERE 

 Let us contrast the previous event with one other: POICN database case # 280. The 

narrative here is as follows: 

On July 15, 2003, a homemade explosive device was found placed on tanks of acetone and phenol at the 
Saratovorgsintez Limited Liability Company in Saratov, Russia (A, B, C, D).  The device was made from a 
modified RGD-5 hand grenade, with extra cartridges and wiring.  The device was deemed harmless after 
police removed it from the chemical company and discovered it was made with a training grenade and 
was not a live explosive (A, B, C, D).  Ethnonational Chechen Rebels were suspected to have placed the 
device at the chemical plant to intimidate Moscow (A).  Some reports indicate that authorities believed 
the Chechens were planning bombings in at least four other cities in Russia (A). 
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 Although this case too involves chemical agents (CHEM, referring to the tanks of acetone 

and phenol on which the explosive was placed), this narrative “feels” like a different case than 

the previous one. Here the coders found, in addition to CHEM, the use of explosives by an 

ethno-nationalist group. Indeed, this case occupies a different region of the cases-by-variables 

“space,” as indicated in Figure 4. 

FIGURE 4 ABOUT HERE 

 Examination of specific case narratives such as these two encourages us to look for a 

clustering of all 181 cases based on their attributes. Toward this end we apply a standard 

clustering procedure (k-means) to the U matrix of eq. 2 (see Melamed, Breiger, and Schoon, 

2012, for a discussion of this point). The procedure clearly discovers distinctive clumps of cases, 

as illustrated in Figure 5. 

FIGURE 5 ABOUT HERE 

 Somewhat arbitrarily, we chose a six-cluster solution. We partitioned the columns of 

 V S-1UTY (see eq. 4 and related discussion), which is a matrix of 12 rows (one for each variable) 

and 181 columns (one for each event), into a 12 x 6 (clusters) matrix. Table 3 shows the results. 

Notice that Table 3 illustrates a key feature of our approach, namely that 

the usual regression coefficients (in Table 2) are sums across clusters of 

cases! 

TABLE 3 ABOUT HERE 

 Thus, contrary to the way we learned about regression in our mandatory “stats” class, the 

regression coefficients may be understood as relating (clumps of) cases to variables. 
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 Let’s now take a look at Table 3. 

5. What we learn about CBRN events from this analysis 

 Beginning with Cluster A in Table 3, we see that about half the events in our study (96 

events) formed a cluster that contributed to the overall regression coefficients in a way that is 

(with a few exceptions) consistent with the estimated coefficients from the standard regression in 

Table 2. (For this first cluster, for example, the net effect on lethality of assassination and of in-

house production was negative; the net effect of perpetrators from cults was positive; and so 

forth). 

 However, for the other half of the events in our study, the interpretations diverge from 

that of the standard regression coefficients in Table 2. With respect to hostages, virtually the 

entire net effect of “hostages” on “total deaths” (the regression coefficient in Table 2 being 

.2197) is due to Cluster B (see row 2, column 2 of Table 3), and Cluster B consists of a single 

case (case # 174, an event involving the FARC).  

Usually we would recognize a single deviant case (the single case in Cluster B) as an 

outlier, and we have a variety of well-known techniques for dealing with outliers (Belsley, Kuh, 

and Welsch, 1980). However, it is our view that (often in general) an entire set of datapoints 

consists of sets of partially overlapping outliers. 

In this application, for example, we find that almost the entire net effect of explosives on 

number of deaths comes, not from Cluster A, but from Cluster F (see the “expl” row of Table 3). 

Cluster F is composed of 42 events, with an overrepresentation of events having ethno-

nationalist groups as perpetrators. (To take one example, event # 280, narrated above, involving 
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allegations of Chechen rebels placing an explosive on top of cans of chemicals, is placed in 

Cluster F by our clustering procedure.) Cluster F seems to be a distinctive “clump” of cases in 

which there is a very high net effect of explosives use on casualties, and an unusually negative 

effect of religious extremist perpetrators on casualties.  

Below Table 3 we show the mean deaths produced by each cluster. (The total number of 

deaths in our sample of 181 events was 966; the overall mean is 5.3.) We also show the 

percentage of events in each cluster that resulted in any deaths. (The mean for the whole sample 

is 23.8%.) 

Cluster A, whose overall profile of net effects is very similar to that of the sample as a 

whole (compare column 1 to the final column of Table 3), accounts for half the total deaths (505 

out of 966 deaths in our sample). However, take a look at Cluster C. This cluster consists of 17 

events that had a mean number of deaths of 7.59 killed per event (much higher than the Cluster 

A mean of 5.26), and 76.5% of the Cluster C events resulted in deaths (compared to 17.7% for 

Cluster A). By these measures, the Cluster C events are very lethal. The bad news, however, is 

that the profile of Cluster C not only looks extremely different from that portrayed by the usual 

regression coefficients (compare column 3 to the final column in Table 3), but the net effects for 

Cluster C are all tightly close to 0. In other words, unlike Cluster A, the events in Cluster C form 

a “clump” that was entirely poorly predicted by the usual regression model. The good news, 

though, is that we can identify such “clumps” by use of our procedures. Looking at the 

composition of Cluster C events, they tend especially to be events perpetrated by religious 

extremists who used explosives.  
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6. In conclusion 

 We have illustrated a new approach to “turning regression analysis inside out,” and we 

have indicated applications of that approach to the study of CBRN events such as those in the 

START Center’s POICN database.  

 We have illustrated a “dual” to regression analysis, one in which the key results of the 

regression (including the coefficients and the predicted values on Y) may be seen to depend on 

the cases. This allows us to use the variables to learn about the cases, whereas the standard use of 

regression analysis is to make the cases invisible and to discuss only the relations among the 

variables (see also Shalev 2007 for a critique of the use of regression analysis in the comparative 

study of welfare states). Unlike many critics of “general linear reality” (Abbot 1988, and, 

subsequently, many other critics), we do not want to overturn regression modeling. To the 

contrary, we want to get more out of it. We do so by recognizing foundations of regression 

modeling in “spaces” similar to those used by practitioners of case-oriented techniques (Ragin, 

2008), factor analysis (Shalev, 2007), and correspondence analysis (Le Roux and Rounet, 2004). 

 With respect to the prediction of CBRN events and their key features, our analysis 

demonstrates the possibility that standard linear models do well in portraying major regions of 

the data (such as our Cluster A), while at the same time more than one story about how 

predictors affect the outcome is necessary in order to describe adequately the data as a whole. 

We seem poised to be able to identify multiple causal “recipes,” and also to identify subsets of 

cases for which a particular linear model does not perform well. These abilities suggest the value 

of continuing to work on turning regression modeling inside out. 
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Table 1: Descriptions of Outcome Variable and of Predictor Variables* 

Variable Brief definition 

Mean or 
Proportion 
(SE) 

 
Total killed 

 
The number of all individuals who died as a direct result of the CBRN 
event 
 

 
5.34 (24.51) 

assassination The event reportedly intended to involve an assassination, an 
attempted assassination as primary objective    
 

0.138 

Hostages An event whose primary objective is to obtain political or other 
concessions in return for the release of prisoners (hostages) 
 

0.006 

CHEM The event reportedly involved the use of a toxic chemical agent 
 

0.884 

BIO The event reportedly involved the use of a biological agent 
 

0.088 

doubtT Reservation, in the eyes of POICN-D analysts, that the event in 
question is truly terrorism 
 

0.431 

explosive The CBRN attack used an explosive. 
 

0.171 

production Based on source information, the event involves the perpetrator 
producing some level of the agent "in house" 
 

0.166 

cult Perpetrators included any type of cult, including religious groups. 
Distinguished from other organizations by their authoritarian internal 
social control mechanisms rather than by their specific theologies or 
ideologies 
 

0.144 

relX All groups operating in the name of religion that do not fall under 
“religious cult” 
 

0.094 

1issue A perpetrator addresses a single issue, such as environmentalism 
 

0.044 

loner Individuals who are not operationally linked to any larger groups 
 

0.094 

ethNat Perpetrator place greater importance on descent/heredity than 
political borders; may be pursuing sovereignty or additional rights 

0.232 

  

*For complete description, see the codebook (START Center, 2008) 
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Table 2. Regression of Total Killed on predictor variables 

 

 

 

 

 

 

 

 

 

  

Xi Est SE t Pr(>|t|)
assass -0.172 0.09 -1.97 *
host 0.220 0.07 3.02 **
CHEM 0.076 0.11 0.72
BIO 0.035 0.11 0.31
doubtT 0.133 0.08 1.71 .
expl 0.117 0.09 1.26
prod -0.275 0.12 -2.39 *
cults 0.385 0.12 3.15 **
relX -0.012 0.09 -0.13
1issue -0.027 0.07 -0.36
lone 0.009 0.08 0.12
ethNat -0.013 0.08 -0.16
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clust.A clust.B clust.C clust.D clust.E clust.F Sum =
(n=96) (n=1) (n=17) (n=8) (n=17) (n=42) reg. coef.

assass -0.1697 0.0000 -0.0066 0.0000 -0.0032 0.0071 -0.1724
host -0.0041 0.2537 -0.0040 0.0000 0.0002 -0.0262 0.2197
CHEM 0.0754 0.0000 0.0017 0.0000 0.0004 -0.0019 0.0756
BIO 0.0235 0.0000 -0.0062 0.0000 -0.0011 0.0184 0.0346
doubtT 0.1036 0.0000 -0.0026 0.0000 0.0026 0.0298 0.1334
expl -0.0306 0.0000 0.0213 0.0000 -0.0027 0.1291 0.1171
prod -0.2474 0.0000 -0.0033 0.0000 0.0021 -0.0268 -0.2754
cults 0.3586 0.0000 0.0095 0.0000 0.0003 0.0165 0.3849
relX 0.0402 0.0000 0.0151 0.0000 0.0016 -0.0684 -0.0116
1issue 0.0095 0.0000 -0.0004 -0.0449 0.0001 0.0087 -0.0269
lone 0.0567 0.0000 0.0025 0.0000 -0.0460 -0.0039 0.0094
ethNat 0.0237 0.0000 -0.0067 0.0000 0.0008 -0.0307 -0.0130
MnDead 5.26 89.00 7.59 0.00 1.47 5.19
Prop. 17.7% -- 76.5% 0% 23.5% 19%

Table 3. The usual regression coefficients (see Table 2) are sums across clusters of cases* 

  

*Notice that the sum across any row (i.e., the sum across 
the clusters of cases for a particular variable) yields the 
regression coefficient (see Table 2) for that variable. 

In parentheses under cluster name (e.g., “n=96”) are the 
number of events comprising each cluster. 

Below the table, “MnDead” is the mean number of deaths 
within each cluster (respectively), and “Prop.” Is the 
proportion of events in each cluster with at least one death. 
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Figure 1. Correlation of 𝑌�k with 𝑌� , for k = 1, …, 12 

𝑌� = 𝐔[, 1: 𝑘] 𝑡(𝐔[, 1: 𝑘]) 𝐲 

where U comes from the SVD of data matrix X, and y is the observed outcome variable. 

The dashed line shows the cumulation of (1/12) shares of the total. 
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Figure 2: A graph of the first two dimensions of U (cases) and V (points). Red line (marked 

.5840)  is distance of projection of CHEM from the origin. Blue line (marked .0721) is distance 

of projection of “ethNat” from the origin. Ratios of these distances (.5840 / .0721 = 8.0971) are 

identical to ratios of the corresponding regression coefficients (in two dimensions: 

.0626 / -.00773 = -8.0971).  The same holds true for all pairs of regression coefficients. 

 



 
 

24 
 

 

 

Figure 3. The position of Case 517. The narrative of this case is (in part): “: “In late November 

[1994], Aum Shinrikyo cult members … attempted to assassinate Noboru Mizuno … [who] was 

helping deserters from Aum … escape…. [One of four attackers] tried to spray VX nerve agent, 

from a syringe, on Mizuno’s neck….” Properties of case 517 include: CHEM, doubtT, assass, 

cults, prod [the agent was produced “in-house”]. 
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Figure 4. The position of Case 280. The narrative of this case is (in part): “On 15 July 2003, a 

homemade explosive device was found placed on tanks of acetone and phenol at … [a chemical 

factory] in Saratov, Russia…. Chechen Rebels were suspected to have placed the device … to 

intimidate Moscow….” Properties of case 280 include: CHEM, expl, ethNat. 
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Figure 5. Clustering of the network among the cases (UUT; eq. 7). We use full numeric 

information in performing the cluster analysis. Purely to aid visualization, above shows the 

clustering applied to values greater than an arbitrary cutoff value. 
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