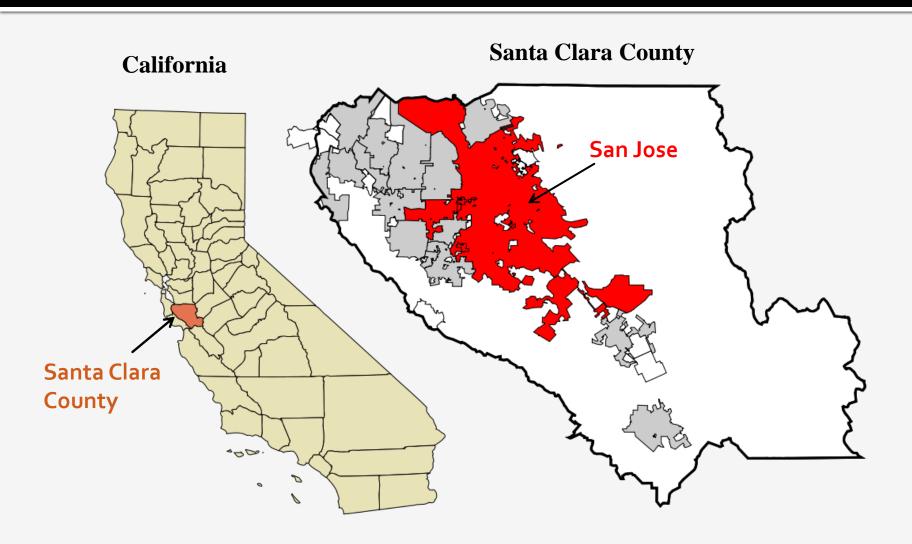
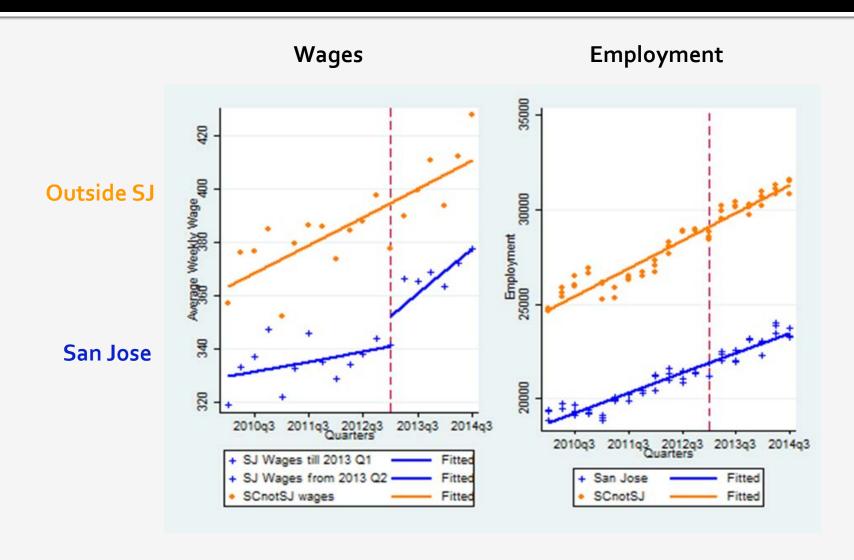
Are Minimum Wages Absorbed by Price Increases?

ASSA/LERA annual meetings

January 3, 2016 San Francisco, CA


Sylvia Allegretto, Co-director Center on Wage & Employment Dynamics University of California, Berkeley

San Jose citywide MW


- Motivated by San Jose State University students
 - November 2012, ballot initiative passed by 59 percent
 - March 2013 one step increase from \$8 to \$10, affecting over 20 percent of SJ covered workers (Reich 2012) versus 6 percent in all state and federal increases since 1990 (Autor, Manning & Smith 2015)
- Great opportunity for a local quasi-experiment
 - First study on price effects of a citywide MW policy
 - Use of internet-based data to compile a unique data set
 - Study restaurant menu prices given RIs use of MW workers
 - San Jose location within a larger labor market

Study area & research design

QCEW wages & employment

(Combined FSR & LSR)

Getting to our final sample

Sample process	N
Santa Clara County active food facilities	5,747
Screen for full- and limited-service restaurants	3,285
Restaurants with online menus—first wave	1,211
Restaurants with online menus—second wave	1,009
Final sample of restaurants with menu pairs	884

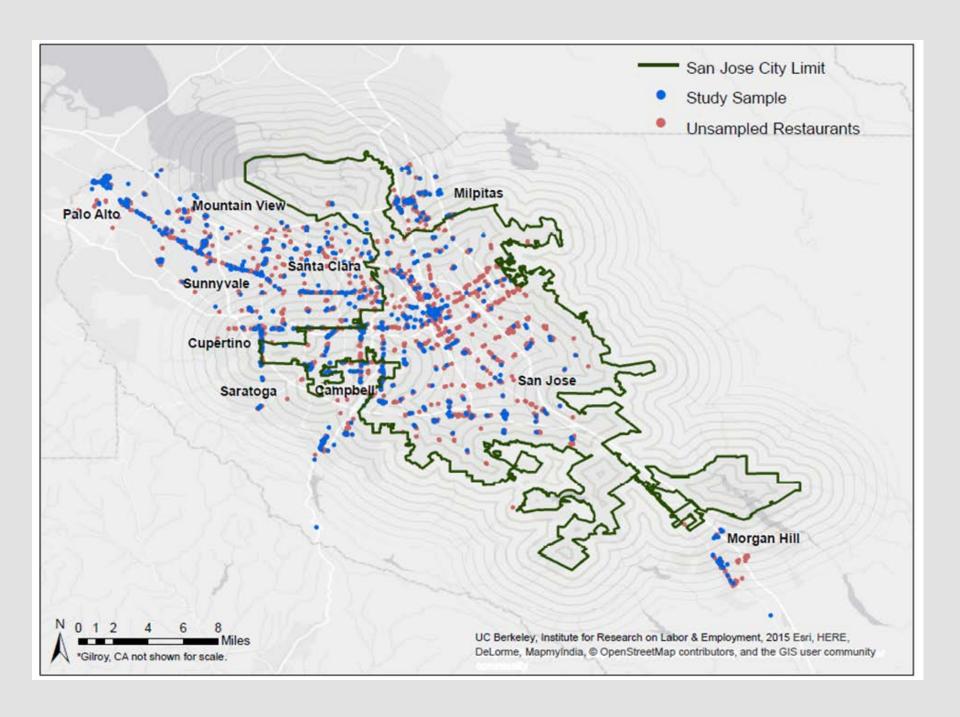
EVERY Pre- & Post-MENU ITEM WAS DIGITIZED!! (n = 60,509)

Information on each restaurant

From the Santa Clara County AFF List:

- Name, exact address, phone number
- Three employee size bins: 1-7, 8-39 & 40+.

From recoding:


- Full-service or limited service
- Chain or independent
- Number of menu items
- Distance to the San Jose border
- Restaurant density

Additional coding of 3 main dishes:

- Chicken N=7,291 for chicken dishes,
- Hamburger N=899
- Pizza N=644

Representativeness of sample

	AFF List	Sample	
A. Distribution			
San Jose	0.44	0.37	
Number of observations	1,460	326	
Outside-San Jose	0.56	0.63	
Number of observations	1,825	558	
B. Distribution by employment size bins			
San Jose			
1-7 employees	0.63	0.58	
8-39 employees	0.31	0.33	
40+ employees	0.07	0.09	
Outside-San Jose			
1-7 employees	0.56	0.52	
8-39 employees	0.37	0.39	
40+ employees	0.07	0.08	

D-n-D Specifications

• Eq. 1: basic model

$$[\log(\text{post-price})_i - \log(\text{pre-price})_i] = \alpha + \beta_1(SJ)_i + \epsilon_i$$

$$E = \frac{e^{(\beta_1)} - 1}{0.25}$$

• Eq. 2+: build on basic model

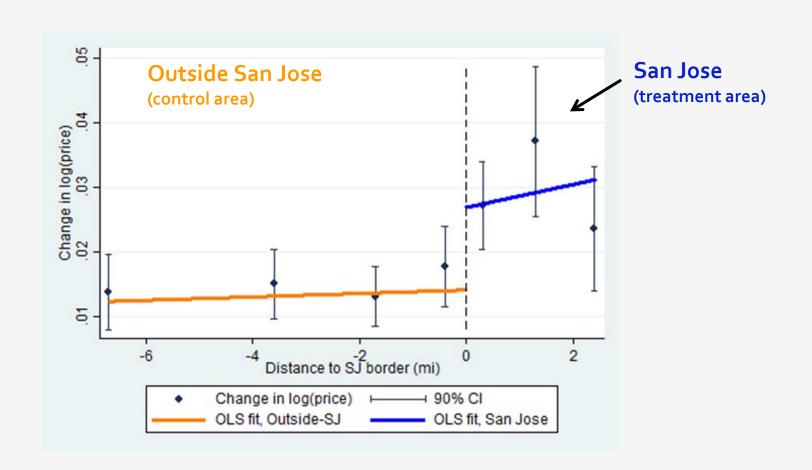
$$[\log(\text{post-price})_i - \log(\text{pre-price})_i] = \alpha + \beta_1(SJ)_i + \beta_2(SJxFS)_i + \epsilon_i$$

$$E_{LS} = \frac{e^{(\beta_1)} - 1}{0.25}$$

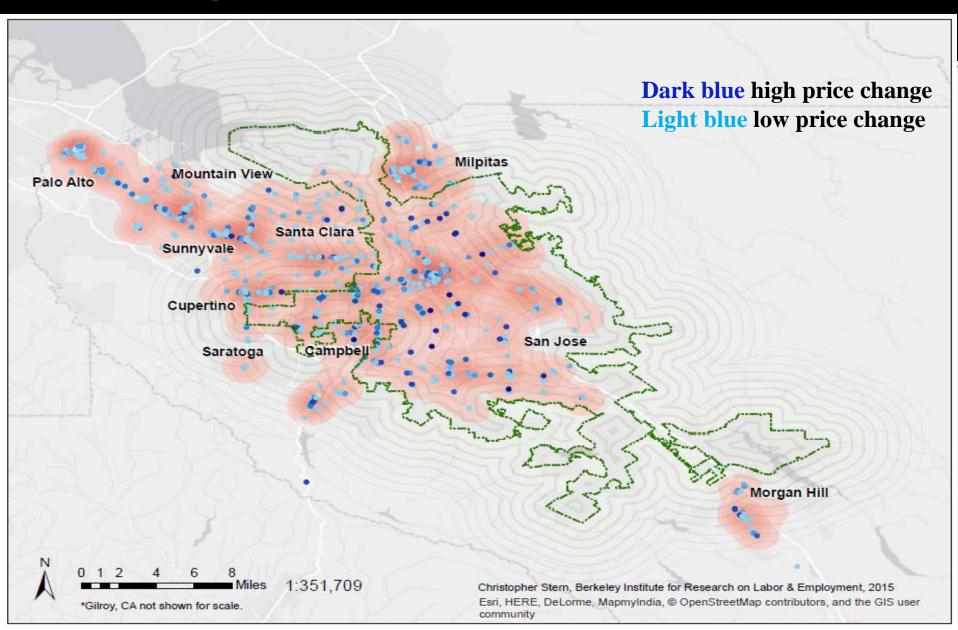
$$E_{FS} = \frac{\left(e^{(\beta_1)} - 1\right) - \left(e^{(\beta_2)} - 1\right)}{0.25}$$

Main results & by sector

	Elasticities (se)
A. Overall	0.058***
	(0.016)
B. Sector	
Full-service	0.040**
	(0.019)
Limited-service	0.083***
	(0.027)


Significance levels: ***1%, **5%, *10%

Results by chain status


	Elasticities (se)
C. Chain analyses	(80)
1. Indicator for chain using the whole sam	ple
Chain (at least two locations)	0.098*** (0.030)
Non-chain	0.030* (0.016)
2. Sample using only chains with outlets i both the treatment and control areas	n
Within-chain effect	0.062** (0.027)

Significance levels: ***1%, **5%, *10%

San Jose border effects

Density matters

Cost increase for restaurants

Net payroll increase = earnings elasticity (0.20 DLR) less 15 percent reduction in hiring and retention costs (turnover).

• To get cost pressure, multiply the net payroll increase by the labor share of operating costs (one-third in restaurants).

$$-0.17*(1/3)=0.057$$
 percent

■ Thus, our estimated price elasticity of 0.058 along with the cost increase to restaurants of 0.057 suggests a full-price pass through.

Summary

- ■SJ restaurant price elasticity overall = 0.058
 - 0.040 for FS restaurants, 0.083 for LS restaurants
 - 0.077 for small, 0.039 for mid-size, 0.008 for small
 - 0.098 and 0.030 for chains and non-chains
 - 0.062 for within-chain estimate
 - Border effects
 - Restaurant density matters
- Cost of MW increase was absorbed by price increases

Caveats

- Do our results extend to restaurants without an internet presence?
- Need data on market basket—quantities of each purchased item—for proper weights
- Revisit preliminary result of no employment effect
- Cost pressure depends on wage effects, which are imprecisely estimated.

Future research

- Improve local earnings and employment elasticity estimates with updated data
- Scraping of internet data a feasible approach to studying restaurant price patterns and MW effects
- Scrape data from Grub-Hub and similar sites such as Oakland, LA, other cities

THANKYOU!

"Are Local Minimum Wages Absorbed by Price Increases? Estimates from Internet-based Restaurant Menus" by Sylvia Allegretto & Michael Reich