Do Minimum Wages Really Reduce Teen Employment? Evidence from the United States

Productivity, Investment in Human Capital and the Challenge of Youth Employment

October 16, 2012 University of Bergamo Bergamo, Italy

Sylvia A. Allegretto, PhD Economist, Institute for Research on Labor and Employment University of California, Berkeley USA

Outline

History of the Federal MW

2007: \$5.85 to \$7.93

2010: \$7.25 to \$9.04

Number of SMW>FMW

Who are MW workers?

Who are MW workers?

Importance of MW

- Politically debated for years
- Three decades of declining real wages
- Recent declines in family incomes
 - -8.1% or \$4,400 since 2007
- Significant increases in student loans
- Huge gap and growing trends in inequality

4th Generation MW research

- Builds upon G1-G3
- Local case studies
 - Card & Kruger NJ/PA (2000)
- National panel studies
 - Neumark & Wascher (2007, 2000)
- Replicates and refutes "old-consensus" estimates on employment -1% to -3%

IRLE on forefront of MW research

 Do Minimum Wages Really Reduce Teen Employment? Accounting for Heterogeneity and Selectively in State Panel Data

Allegretto, Dube & Reich Industrial Relations April 2011

 Minimum Wage Effects Across State Borders: Estimates Using Contiguous Counties

Dube, Lester, Reich *Review of Economics and Statistics* November 2010

Recall importance of Teens

- 1/3 of MW workers are teens
- 43% of teenage workers are MW earners
- MW workers are disproportionally:
 - Young
 - Female
 - High school degree or less
 - Hispanic or African American

Teen EPOPs

Source: Bureau of Labor Statistics and National Bureau of Economic Research. Data are seasonally adjusted.

Teen EPOPs by Region

Panel data 1990-2010

- Current Population Survey (CPS)
 - Estimates monthly unemployment rate, etc.
 - Individual-level repeated cross-section
 - Widely used in research
- CPS is merged w/macro variables that capture variation in aggregate labor demand & supply
- Merge with MW variables

Canonical Fixed Effects Model

$$y_{ist} = \beta M W_{st} + X_{ist} \Gamma + \lambda \cdot unemp_{st} + \phi_s + \tau_t + \varepsilon_{ist}$$

- *MW* refers to the log of the minimum wage
- *i, s*, and *t* denote: individual, state & time indexes
- X is a vector of individual characteristics
- *unemp* is the quarterly unemployment rate in state *s* at time *t*
- ϕ_{s} refers to state fixed effects
- T_t represents quarterly time dummies
- Standard errors clustered at the state level

Building FE Specification

(1)
$$y_{ist} = \beta M W_{st} + X_{ist}\Gamma + \lambda \cdot unemp_{st} + \phi_s + \tau_t + \varepsilon_{ist}$$

(2) $y_{ist} = \beta M W_{st} + X_{ist}\Gamma + \lambda \cdot unemp_{st} + \phi_s + \tau_{dt} + \varepsilon_{ist}$
(3) $y_{ist} = \beta M W_{st} + X_{ist}\Gamma + \lambda \cdot unemp_{st} + \phi_s + \psi_s \cdot t + \tau_t + \varepsilon_{ist}$
(4) $y_{ist} = \beta M W_{st} + X_{ist}\Gamma + \lambda \cdot unemp_{st} + \phi_s + \psi_s \cdot t + \tau_dt + \varepsilon_{ist}$

•Importance of controlling for unexplained heterogeneity

Wage Effects

		(1FE)	(2)	(3)	(4ADR)
All Teens	η	0.123***	0.161***	0.165***	0.149***
	se	(0.026)	(0.030)	(0.025)	(0.024)
16-17	η	0.197***	0.224***	0.221***	0.220***
	se	(0.032)	(0.036)	(0.030)	(0.033)
18-19	η	0.074**	0.115***	0.120***	0.093***
	se	(0.030)	(0.037)	(0.038)	(0.033)
Division-specific time controls State-specific time trends		:	Y -	- Y	Y Y

Employment Effects

		(1FE)	(2)	(3)	(4ADR)
All Teens	η	-0.118**	-0.036	-0.034	0.047
	se	(0.022)	(0.034)	(0.027)	(0.024)
16-17	η	-0.232**	-0.077	-0.071	0.101
	se	(0.028)	(0.043)	(0.032)	(0.032)
18-19	η	-0.053	-0.010	-0.020	0.018
	se	(0.021)	(0.034)	(0.027)	(0.027)
Division-specific time controls State-specific time trends		-	Y -	- Y	Y Y

MW Employment Time Paths

Hours Effects

		(1FE)	(2)	(3)	(4ADR)
All Teens	η	-0.074**	-0.054	-0.001	-0.032
	se	(0.035)	(0.048)	(0.040)	(0.042)
16-17	η	-0.070	0.002	-0.011	0.038
	se	(0.042)	(0.074)	(0.044)	(0.073)
18-19	η	-0.090**	-0.092*	-0.011	-0.079*
	se	(0.042)	(0.049)	(0.050)	(0.042)
Division-specific time controls State-specific time trends		-	Y -	- Y	Y Y

ADR main results for teens

Specification		(1 FE)	(4 ADR)
		0.400***	0 4 4 0 ***
A. wages	η se	0.123*** (0.026)	0.149^^^ (0.024)
B. Employment	coeff	-0.047**	0.019
	se ŋ	(0.022) -0.118**	(0.024) 0.047
C Hours	n	-0 074**	-0.032
0.110010	se	(0.035)	(0.042)

Y

Y

Division-specific time controls State-specific time trends

Local case study

DLR generalizes local case study design

DLR County pairs

-Average Difference in Minimum Wages in Pairs with a Differential

DLR main results for restaurants

Specification		(1 FE)	(6 DLR)
A. Earnings	η se	0.224*** (0.033)	0.188*** (0.060)
B. Employment	η se	-0.211** (0.095)	0.016 (0.098)
C. Labor demand elasticity		-0.787* (0.427)	0.079 (0.286)
County pair X period du State-specific time tren	ummies ds		Y Y

DLR Employment (1) and (6)

Discussion of results

- Monopsony at work?
- Other positive effects of MWs
 - Does not kills jobs, but job vacancies
 - Decreases turnover
 - Decreases recruiting & training costs
 - Increases productivity
 - Elevates pressure on government support
 - MW as stimulus

Widening Wedge of Wage Inequality

Widening Wedge of Wage Inequality

Summary

- ADR and DLR are strong evidence against conventional wisdom of negative employment effects.
- Failure to account for critical differences in employment patterns coupled with MW changes results in biased estimates—localized estimates are better.
- Spurious estimates are common and sizeable both for low wage sectors such are restaurants and for low-wage groups such as teens. This explains why the 3G studies were wrong.
- Our estimates are robust using multitude of data sources: QCEW, CBP, QWI, Census/ACS, CPS

THANKYOU!

Do Minimum Wages Really Reduce Teen Employment?

Productivity, Investment in Human Capital and the Challenge of Youth Employment

October 16, 2012 Bergamo, Italy

Sylvia A. Allegretto, PhD Economist, Institute for Research on Labor and Employment University of California, Berkeley USA

