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The Impact of Information Technology

on Scientists’ Productivity, Quality and

Collaboration Patterns

Abstract

This study advances the prior literature concerning the impact of informa-
tion technology on productivity in academe in two important ways. First, it
utilizes a dataset that combines information on the diffusion of two noteworthy
and early innovations in IT – BITNET and the Domain Name System (DNS)
– with career history data on research-active life scientists. This research de-
sign allows for proper identification of the availability of access to IT as well as
a means to directly identify causal effects. Second, the fine-grained nature of
the data set allows for an investigation of three publishing outcomes: counts,
quality, and co-authorship. Our analysis of a random sample of 3,771 research-
active life scientists from 430 U.S. institutions over a 25-year period supports
the hypothesis of a differential return to IT across subgroups of the scientific la-
bor force. Women scientists, early-to-mid-career scientists, and those employed
by mid-to-lower-tier institutions benefit from access to IT in terms of overall
research output and an increase in the number of new co-authors they work
with. Early-career scientists and those in top-tier institutions gain in terms of
research quality when IT becomes available at their campuses.
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The Impact of Information Technology on Scientists’ Productivity, Quality and 

Collaboration Patterns 

 

Abstract 

This study advances the prior literature concerning the impact of information technology on 

productivity in academe in two important ways. First, it utilizes a dataset that combines 

information on the diffusion of two noteworthy and early innovations in IT -- BITNET and the 

Domain Name System (DNS) -- with career history data on research-active life scientists.  This 

research design allows for proper identification of the availability of access to IT as well as a 

means to directly identify causal effects.  Second, the fine-grained nature of the data set allows 

for an investigation of three publishing outcomes: counts, quality, and co-authorship. Our 

analysis of a random sample of 3,771 research-active life scientists from 430 U.S. institutions 

over a 25-year period supports the hypothesis of a differential return to IT across subgroups of 

the scientific labor force. Women scientists, early-to-mid-career scientists, and those employed 

by mid-to-lower-tier institutions benefit from access to IT in terms of overall research output and 

an increase in the number of new co-authors they work with.  Early-career scientists and those in 

top-tier institutions gain in terms of research quality when IT becomes available at their 

campuses. 
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I.  Introduction  

The Internet and other advancements in information technology (IT) have changed the 

workplace (e.g., Brynjolfsson 1993, 1998, Kelley 1998, Dewan and Kraemer 2000). The impact 

of such changes is of particular importance to the production of knowledge given that scientific 

inquiry is highly dependent on collaboration and access to information. However, up to now we 

have only limited knowledge concerning how advancements in IT have affected the research 

patterns of scientists over time. One drawback to previous studies is that they typically compare 

research patterns before and after an IT-innovation became widespread, attributing differences to 

the new technology without knowing when (and sometimes whether) the new technology 

actually was available to the individual scientist (e.g., Hamermesh and Oster 2002, Rosenblat 

and Mobius 2004, Kim, Morse and Zingales 2006, Wuchty, Jones and Uzzi 2007, Butler, Butler 

and Rich 2008). An important exception is Agrawal and Goldfarb (2008).  A further limitation of 

such studies, which applies to the latter paper as well, is that they rely on aggregated data at the 

journal article or institutional level, making it difficult to accurately estimate the effect of IT 

diffusion on an individual scientist’s knowledge production process.  

The few studies that have investigated the impact of IT on productivity and collaboration 

patterns of individual scientists (Hesse, Sproull, Kiesler and Walsh 1993, Cohen 1996, Barjak 

2006, Winkler, Levin and Stephan forthcoming) have, with the exception of Winkler et al., relied 

on self-reported data on IT usage.  A weakness of this approach is that it is almost impossible to 

accurately date the initial adoption of the information technologies investigated in the studies. 

Winkler et al. overcome this difficulty by appending information on the date of institutional 

adoption of IT to individual-level data on scientists. Nevertheless, a limitation of all of these 
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studies is that they use cross-sectional data to identify the impact of IT, which raises concerns 

about proper identification of causal effects.  

This study advances the prior literature in two important ways. First, it utilizes a dataset 

that combines information on the diffusion of two noteworthy and early innovations in IT -- 

BITNET and the Domain Name System (DNS) -- with career history data on research-active life 

scientists.  This research design allows for proper identification of the availability of access to IT 

as well as a means to directly identify causal effects.  Second, the data set is extremely rich, 

allowing for an investigation of three publishing outcomes: counts, quality, and co-authorship. 

 Our research design permits us to test whether the adoption of IT by an institution 

enhances the research of three specific subgroups of the scientific labor force: (1) female faculty 

members, who often face greater mobility constraints than their male colleagues; (2) faculty 

early in their careers, who are likely more willing and able to take advantage of the new 

technology than more established scientists; and (3) faculty at lower-tier institutions, who are 

more likely to have fewer in-house colleagues and resources than faculty at top-research 

universities.  Implicit in our analysis is the assumption that faculty members take advantage of 

the latest and best technology, especially when they have more to gain than others from the new 

technology. 

Our empirical work largely supports the three hypotheses.  First, we find that women 

scientists benefitted more than their male colleagues from the availability of IT in terms of 

overall output and an increase in the number of new co-authors they acquire.  Second, while 

later-career stage scientists did not benefit from the adoption of IT by their institutions, early-to-

mid-career stage scientists did.  Finally, where one works mediates the effects:  the availability 
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of IT increased productivity of scientists at mid-tier (and in some instances at lower-tier) 

institutions.   

The plan of this paper is as follows.  In Section II we review the literature concerning the 

effect of information technology on scientists’ research patterns.  Section III summarizes our 

research design. Section IV introduces BITNET and DNS, two IT innovations that have had an 

impact on scientists’ research and in which we are interested. Section V describes our data, 

variables and models. Section VI presents the results.  Conclusions are drawn in Section VII.  

II. Literature 

Our three hypotheses regarding the impact of IT on the productivity of scientists have 

received some previous attention. Specifically, research has looked at how advancements in IT 

enhance scientists’ productivity and connectivity regardless of their ―location‖ in the profession
1
 

and the extent to which IT enhances the productivity and connectivity of some subgroups (e.g., 

women, junior faculty members, or those employed by lower-tier institutions) more than others. 

Below, we review prior findings regarding the IT-research productivity relationship and the IT-

collaboration relationship. 

 IT and Research Productivity 

Investigations of the relationship between IT and research productivity generally find 

support for the view that IT enhances productivity.  Hesse et al. (1993) surveyed oceanographers 

and found a positive relationship between oceanographers’ use of computer networks and their 

publication counts as well as professional recognitions. In a survey of scientists from four 

                       
1
 ―Location‖ here refers to the geographical location of a scientist’s employment setting as well as social standing in 

the academic labor force. For example, women scientists are reported to occupy a more disadvantaged position in 

science. Junior faculty members and those employed by lower-tier institutions also have relatively less resources to 

support their work. 
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disciplines--chemistry, philosophy, political science and sociology--and 26 institutions, Cohen 

(1996) similarly found that scientists who reported using computer-mediated communication 

tools reported higher numbers of publications and more professional recognition. Winkler et al. 

(forthcoming) found limited evidence of a positive IT-productivity relationship, using 

information on life scientists from the Survey of Doctorate Recipients (SDR) and institutional-

level information on adoption of various indicators of IT. Evidence of a positive IT-productivity 

relationship is also reported in Kaminer and Braunstein (1998), Walsh, Kucker and Gabby 

(2000), and Barjak (2006). 

The hypothesis of differential IT effects has been tested along three dimensions: 

institutional status, professional age and gender. Hesse and colleagues (1993) used geographical 

location to proxy for institutional status because the more prestigious departments in 

oceanography tend to be located closer to the coasts and the less prestigious ones more inland. 

They found that geographically-disadvantaged scientists receive a higher productivity gain from 

IT. Cohen’s (1996) study of scientists from a broader set of disciplines found no support for the 

hypothesis of disproportionate benefits for scientists employed at lower-tiered institutions, and 

Winkler et al. (forthcoming) found limited support for this hypothesis is their study of life 

scientists. With regard to seniority, Hesse et al. (1993) reported that junior researchers gained 

more professional recognition than did their senior colleagues when they engaged in more 

intensive use of IT. Winkler et al. (forthcoming) examined whether IT access benefits women 

relative to men, but they found no support for this hypothesis.  

Overall, these studies provide mixed empirical evidence with regard to the view that IT 

differentially affects subsets of the scientific labor force.  The data or methodology employed in 

these studies, however, is sufficiently problematic to lead one to conclude that IT has weak or 
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mixed effects.  What is needed is a dataset such as the one examined here – one that combines 

longitudinal data on career scientists with institutional-level variables reflecting timing of IT 

adoption – to provide more compelling evidence about the presence and magnitude of causal 

effects. 

IT and Research Collaborations 

In recent years, there has also been growing research interest in how IT affects the 

collaborations of scientists. This research interest has been prompted by the increase in the 

number of co-authored papers by individuals at different academic institutions and in different 

countries, as well as in the number of co-authors per paper.  An analysis of approximately 13 

million published papers in science and engineering from 1955 to 2000, for example, found an 

increase in team size in all but one of the 172 subfields studied and average team size was found 

to have nearly doubled, going from 1.9 to 3.5 authors per paper (Wuchty, Jones and Uzzi 2006).  

Team size even increased in mathematics, generally seen as the domain of individuals working 

alone and the field least dependent on capital equipment.  Adams et al. (2005) found similar 

results for the top 110-research universities in the United States, reporting that the average 

number of authors per paper in the sciences grew by 53.4%, rising from 2.77 to 4.24 over the 

period 1981-1999.   

Growth in the numbers of authors on a paper is due not only to a rise in collaboration 

within a university—and an increase in lab size—but more importantly to an increase in the 

number of institutions collaborating on a research project.  A study of 662 U.S. institutions 

which had received NSF funding one or more times found that collaboration across these 

institutions in science and engineering, which was rare in 1975, grew in each and every year 

between 1975-2005, reaching approximately 40 percent by 2005 (Jones, Wuchty and Uzzi 2008).  
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Collaboration has increased internationally as well.  Levin, Glanzel, Stephan and Winkler’s 

(2009) study of authorship patterns across a wide array of four-year colleges and universities in 

the U.S. found that the percent of papers with one or more international authors went from 6.6% 

in 1991 to 19.2% in 2007.  

The coincidence of the increase in collaboration since the 1990s with the diffusion of 

several innovations in information technologies has not gone unobserved.  For example, 

Hamermesh and Oster (2002) compared publishing activity in three economics journals over the 

period 1970-1979 with that in the same journals over the period 1992-1996.  They found almost 

20% of authors of jointly-produced articles to be located at distant locations in the more recent 

period compared to 5% in the earlier period.  Adams et al. (2005) also identified a growing mean 

distance between coauthors in their analysis of 2.4 million scientific papers, going from 77.7 

miles in 1981 to 159.4 miles in 1999. Both studies noted that the rate of increase in collaboration 

distance was greatest during a period of rapid diffusion of e-mail and an associated drop in 

communication costs.  A recent survey of U.S.-trained doctorates further points out the 

importance of e-mail to international collaboration:  98% of all scientists and engineers in the 

2006 Survey of Doctorate Recipients who reported having an international collaborator used 

either the phone or e-mail to collaborate with their co-author(s) (National Science Board, 

forthcoming). 

While the research, as outlined above, provides compelling evidence that IT enhances 

collaboration, empirical findings are more mixed with regard to which subgroup(s) of scientists 

benefit relatively more from the expansion of collaboration networks. Agrawal and Goldfarb 

(2008) found that faculty at medium-ranked research universities benefitted the most from the 

adoption of BITNET in the form of increased collaborations in the field of electrical engineering. 
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Butler et al. (2008) studied the impact of IT on collaboration in economics and political science 

using publication data from the top three journals in each field.  In their paper they measure the 

availability of IT based on a review of NBER working papers published during the 1990s. They 

find that prior to January 1997, an e-mail address was never included; since January 1999, 

almost all papers had an e-mail address. Using this as an indicator of IT access, they find that 

collaboration increased, especially at lower-ranked institutions. With regard to differential effects 

of IT by gender on collaboration, Walsh et al. (2000) find limited evidence and Butler et al. 

(2008) find no significant differences.  None of the three studies examine whether effects vary 

with professional age. 

The mixed findings of these studies are due in part to the empirical approaches taken.  As 

noted, with the exception of Agrawal and Goldfarb (2008), prior studies of the IT-collaboration 

relationship infer the role of IT rather than explicitly measure the presence of IT. Without the 

actual date or year of institutional or individual adoption of IT innovations, such an estimation 

strategy cannot account for the variations in the timing of IT adoptions across institutions or 

individuals. Moreover, such studies look at collaboration at the journal or institutional level.  

While these types of analyses are useful in identifying the increasing trend in collaboration, they 

are not suitable for estimating the effect of IT on an individual scientist’s collaboration network, 

lacking adequate controls for possible confounding factors (e.g., Ph.D. cohort, career stage, 

gender and institutional prestige, etc.).   

III. Research Design 

We investigate the effects of IT on productivity and collaboration patterns of research-

active academic life scientists. We also include in our analysis a measure of the quality of 
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scientists’ research. Our goal is to assess whether specific subgroups of the scientific labor force 

gain more than others in terms of productivity, quality and collaborative patterns after an IT 

innovation is made available to them. Again, following prior literature, we group the scientific 

labor force along three dimensions: gender, professional age and employer prestige.  

Compared with previous work, our empirical design has three advantages. First, we used 

a dataset of a random sample of approximately 4,000 scientists. These scientists are drawn from 

multiple scientific disciplines and a wide range of academic institutions with different levels of 

institutional prestige and span a 25-year period. Detailed career history information as well as 

research productivity, quality and collaboration information on these scientists is collected from 

archival data sources. The advantage of such a dataset is that it allows for thorough analysis of 

each individual scientist’s research patterns and adequate control for possible confounding 

factors. Because the data are fine-grained at an individual level, it is possible for us to 

hypothesize about and test whether and how the impact of IT is contingent on scientists’ 

individual characteristics. Second, instead of inferring the effect of IT from differences in 

outcome variables across periods, we directly measure the time that the scientist’s employing 

institution adopted IT innovations. Because we know the initial date when an IT innovation is 

available to a scientist, we can thus take advantage of the longitudinal nature of our dataset and 

use a proper lag structure to better establish the effect of IT on research outcomes. Third, prior 

literature has examined changes in the quantity of scientists’ research publications after a change 

in available IT, but none has investigated the impact of IT on the quality of research. We include 

a measure for the quality of scientists’ research as one of our outcome measures. We believe 

attention to both the quantity and quality of research allows us to conduct a more comprehensive 

assessment of the effect of IT on scientists’ research. 



 

9 

IV. IT Innovations: BITNET and DNS  

This study analyzes the research impact of two indicators of IT connectivity: date of 

institutional adoption of BITNET and date of institutional adoption of a domain name (DNS).
2
  

Previous work by Agrawal and Goldfarb (2008) used BITNET data and work by Winkler et al. 

(forthcoming) examined both indicators.  

Although the IT revolution can be dated to the creation of ARPANET by the Department 

of Defense in 1969, restricted access to ARPANET led others to develop their own networks 

(NSF 2009).  Among these, BITNET was an early leader in electronic communications across a 

range of scientific disciplines and universities.  Conceptualized by the Vice Chancellor of 

University Systems at the City University of New York (CUNY), BITNET’s first adopters were 

CUNY and Yale in May 1981 (Bitnet history).  At its peak in 1991-1992, BITNET connected 

about 1,400 organizations (almost 700 academic institutions) in 49 countries (CREN).  By the 

mid-1990s BITNET was eclipsed by the Internet as we know it today and began to fade away.
3
 

An early and essential development in the Internet’s evolution that contributed to its 

growth was the development of the Domain Name System (DNS) in 1984.  This system, which 

became the industry standard, classified addresses initially according to whether the host 

computer connecting to the network was an educational (edu), commercial (com), governmental 

(gov), military (mil), or other (org) institution; it also provided for a series of country codes.  No 

longer did every host on the Internet need to know the exact name and IP-address of every other 

                       
2
 Data for these indicators were initially collected for a set of 1,348 four-year colleges, universities and medical 

schools in the United States that had been in existence since 1980. See Levin et al. (In process). 

3
 By 1992-1993, the number of academic organizations connected to the Internet actually exceeded the number 

participating in BITNET, and by 1993, the number connected to BITNET began to fall.  See Bitnet History available 

at www.livinginternet.com/u/ui_bitnet.htm). 
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system on the network, nor would it need to continuously update the file containing this 

information as the number of hosts on the Internet grew exponentially.   

Figure 1 shows the diffusion of BITNET over the period 1981-1990 and the diffusion of 

DNS over the period 1985-1993 at the 430 academic institutions where the research-active life 

scientists in our study are located.
4
  Both figures exhibit the typical S-curve associated with 

diffusion of an innovation over time (Rogers 2003)—especially among the non-top institutions; 

adoption first rises at an increasing rate and then levels off.   

Diffusion patterns very considerably by tier.  Among the top 25 research institutions, 

BITNET and DNS diffused rapidly; in the case of DNS approximately all the top institutions had 

adopted the technology within a span of two years.  The diffusion of BITNET was a bit slower, 

but among the top institutions, approximately all had access within five years.  Diffusion was 

somewhat slower among the mid-tier institutions and considerably slower among those 

institutions outside the top 50.  Indeed, by the end of the period, only 50% of these institutions 

had access to BITNET and approximately 60% had access to DNS.   

V. Data, Variables and Model 

Data 

To determine whether the adoption by institutions of BITNET and DNS led to systematic 

differences in scientists’ research outcomes, we begin with a random sample of 12,000 life 

scientists in the U.S., drawn from the UMI Proquest Dissertations database.
5
  We restrict our 

                       
4
 Data on the adoption dates of BITNET beyond 1990 are not available.  See Atlas of cyberspaces, available at 

wwwlib.umi.com/dissertations. 
5
 The 12,000 scientists’ names are randomly drawn from UMI’s Proquest Dissertations Database.  The fields and 

degree years sampled were chosen in proportions that matched the distribution of Ph.D. fields and graduation years 

for faculty serving on the Scientific Advisory Board (SAB) of biotechnology companies that made initial public 

offerings between the years 1970 and 2002.  The sampling frame was structured in this way because the initial 
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sample to those who earned Ph.D.s between 1967 and 1990 to isolate the effects of the first two 

major information technologies, BITNET and DNS, on research productivity.  We use the Web 

of Science’s Science Citation Index to collect the publications, co-authors, and employment 

affiliations.  Because our interest lies in the research outcomes of academic scientists, we retain 

only individuals who have publishing experience in academic institutions after receiving the 

doctorate, creating a dataset of scientist-year observations from 1969 to 1993 with annually 

updated covariates for the individual and the employer institution.
6
 

Each scientist begins in the data the year he or she receives a Ph.D. and continues until (i) 

there is a 5-year interval during which that scientist does not publish, (ii) the scientist starts 

publishing exclusively under a corporate affiliation, or (iii) the year is 1993.  These restrictions 

result in a dataset of 3,771 scientists with 46,301 scientist-year observations.   

Variables 

For each scientist-year observation, we created covariates including the individual’s 

gender, professional experience, number of jobs, publication and citation counts, co-authorship 

patterns, employer ranking and the availability of the two IT-related technologies, namely 

BITNET and DNS.  Detailed definitions of these variables are given in Table 1 and descriptive 

statistics are provided in Table 2.  

                                                                        

research project was designed to study university faculty members’ engagement in the commercialization of 

academic science. Despite the sampling method, our sample is highly representative of the underlying population of 

academic life scientists. See Appendix 1 for more information on how our sample compares the NSF and SESTAT’s 

definition of life sciences. 
6
 We start our estimation window before the onset of BITNET rather than in 1980, when BITNET was first 

available.  We use this window because our goal is to assess how availability of IT affects a scientist’s research 

patterns, not to study the diffusion of BITNET or DNS per se.  In our models, we compare a scientist who has access 

to some form of IT (e.g., BITNET) with one who does not, either because BITNET has not yet been introduced or 

because his or her employer hasn’t adopted it.   
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The three dependent variables in the analysis are (i) research productivity, defined as the 

number of research papers published by a scientist in a given year, (ii) research quality, defined 

as the average journal impact factor for papers published by a scientist in a given year (following 

Azoulay, Ding, and Stuart forthcoming), and (iii) co-authorship gain, which measures the 

increase in the number of new coauthors found in a scientist’s publications in a given year.  An 

example is provided in Table 1. 

Our coding of gender is primarily based on the first name of a scientist.
7
  When a first 

name is androgynous, we search the web for the scientist’s vitae, bio-sketch or pictures, and code 

gender accordingly. This strategy permits us to confidently identify gender for 98 percent of the 

scientists in our data. All remaining scientists with androgynous first names and no gender-

related information from the web are assumed to be male. Our rationale is that most of the 

gender-ambiguous names belong to foreign-born scientists of East Asian decent. It is reasonable 

to assume that the vast majority of these are male given the well-documented gender imbalance 

in science education in these countries. Such a method for determining gender was previously 

used by Ding et al (2006). 

Other individual variables included in the models are professional age, defined as the 

number of years lapsed since a scientist obtained his or her Ph.D. degree, and the number of jobs 

a scientist has held to proxy the range of his professional network. Following Stuart and Ding 

(2006), we use the average citation count to control for professional recognitions received by a 

scientist.  Average citation is measured by predicted number of citations received per paper for 

the papers published by a scientist up through a given year.  The total citation count for each 

                       
7
 The literature on naming conventions suggests that gender is the primary characteristic individuals seek to convey 

in the selection of given names (Alford 1988, Lieberson and Bell 1992). 
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published article at the time we assembled our database (2002) was obtained from the Web of 

Science.  Because we wish to estimate a scientist’s annually-updated, cumulative citation count, 

we distribute each paper’s total citation count as of 2002 back through time, assuming that 

citations arrive according to an exponential distribution with hazard rate equal to 0.1.  Our logic 

is based on the bibliometric literature (for example, Redner, 1998), showing that citations follow 

an exponential distribution and we find this to be true for the typical paper in our study.  The 

predicted, cumulative citation count is then divided by the publication stock to obtain the average 

citation count per paper.  

Two variables are included in the analysis regarding the scientist’s institution:  employer 

ranking and whether the institution has adopted BITNET and DNS.  The former come from the 

Gourman Report, which issued rankings for graduate schools beginning in 1980.  We assigned 

universities their original rating for all years prior to 1980 and updated them every other year for 

the subsequent period.  Continuous ranking measure is not informative in our models, so we 

group institutions into three categories--top 25, between 26 and 50, and below 50. Information 

on if and when the scientist’s university adopted BITNET and DNS come from the Atlas of 

Cyberspaces and the ALLWHOIS website, respectively, and is entered in the models as a 

dichotomous variable with one indicating a scientist’s university has already adopted the IT 

technology (at least one year prior) and zero otherwise.   

Model 

We use a pooled cross-sectional Poisson Quasi-Maximum Likelihood Estimator 

(PQMLE) to examine the effects of BITNET and DNS on the three outcomes of scientific 

research noted above: productivity, quality, and collaboration patterns. The choice of a pooled 

cross-sectional model over a fixed effect model is driven largely by our interest in how some 
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important population characteristics (e.g., gender and employer ranking) affect the outcome 

variables.
8
 Because the Poisson model is in the linear exponential family, the coefficient 

estimates remain consistent as long as the mean of the dependent variable is correctly specified.  

Thus, the PQML estimator does not impose an equi-disperson condition as in a standard Poisson 

estimator (Wooldridge, 2002).  Further, ―robust‖ standard errors are consistent even if the 

underlying data generating process is not Poisson. In fact, the PQML estimator can be used for 

any non-negative dependent variable, whether integer or continuous.  In our research quality 

models, even though the outcome variable contains non-integer values, the QML estimator 

should still be consistent as long as our conditional mean is correctly specified (Gourieroux et al. 

1984, Santos Silva and Tenreyro 2006). 

VI. Results 

 Effect of IT on Research Productivity.  The regression results are reported in Table 3.  

The baseline model includes a set of control variables: calendar-year dummies, Ph.D. subject-

field dummies, professional experience, gender, number of jobs held, lagged publication stock, 

lagged average citation count, lagged past-5-year co-authoring ties, and the employer’s ranking 

category.     

As expected, research productivity is a concave function of a scientist’s professional age.
9
  

Women scientists have lower productivity than men.  Number of jobs held, publication stock, 

average citation and past co-authoring ties all show a positive association with the current year’s 

publication count.  Finally, scientists working at lower-tier institutions (ranked outside the top-

                       
8
 Though not reported in the paper, we have run fixed effect Quasi-Maximum-Likelihood Poisson regressions for 

models in which time-invariant variables are not our main interest. The fixed effect PQML estimates on the 

technology variables are largely consistent with the results of pooled cross-sectional PQML. The fixed effect PQML 

results are available upon request. 
9
 Professional age (experience) is highly correlated with a scientist’s actual age (Stephan and Levin 1992). 
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50) appear to publish less than those employed by the base group (institutions ranked in the top-

25), although the statistical power of the relationship is weak.  

Holding these baseline factors constant, we find that neither the availability of BITNET 

nor DNS at a scientist’s institution, measured with a one-year lag, was associated with a 

significant increase in research productivity (see models 2 and 3 in Table 3).
10

  This finding may, 

however, mask variations in the effect of IT on different groups within the sample. To test the 

three hypotheses set forth at the outset of the paper, we interact the IT variables with three 

covariates:  gender, professional experience and employer ranking. The results of IT-gender 

interactions are reported in columns 4 and 5 of Table 3.  For female scientists the availability of 

BITNET and DNS increases research productivity by 13% (=exp[0.018+0.102]) and 9% (=exp[-

0.015+0.099]), respectively. Both coefficients are significantly higher than the effects found for 

male scientists, measured by the exponent of the coefficient on the non-interacted IT variable. 

We next group a scientist’s professional experience into five categories (1-4, 5-8, 9-14, 

15-20 and 21-26 years after the Ph.D. was earned) and interact each with the two IT variables. 

Results are reported in columns 6 and 7 of Table 3, and also illustrated in the top panel of Figure 

2.  We find that the effect of IT changes as a scientist’s career progresses. IT has no significant 

impact at an early-career stage (e.g., 1-8 years after the Ph.D. was earned); it has a stronger and 

more positive effect on research productivity for mid-career stage scientists (with 9-14 years of 

professional experience), increasing output by approximately 16%.  The effect on research 

productivity decreases significantly for more mature scientists (with 21 or more years of 

professional experience).  

                       
10

 The DNS model also controls for availability of BITNET, since DNS was a ―successor‖ technology. 
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Last, we interact the IT variables with the employer’s rank (top 25, 26-50, and outside top 

50); these results are reported in columns 8 and 9 of Table 3 and are also shown in the top panel 

of Figure 2.  We find that scientists employed at low-to-mid-tier institutions (outside top 50 and 

26-50, respectively) benefit from IT.  Those employed by top-25 institutions do not.  For 

scientists at mid-ranked institutions, access to BITNET boosts output by 17%; access to DNS 

boosts output by 15%.  For scientists who are employed by universities ranked outside the top-

50, access to BITNET is associated with a 6% increase in the current year’s publication count; 

no significant effect is found for DNS.   

Effect of IT on Research Quality.  Our second set of models (see Table 4) focuses on the 

effect of IT on research quality.  The estimations control for a set of individual and institutional 

factors similar to those controlled for in the estimations described above, with the exception of 

the addition of a control for past research quality (measured by the average journal impact factor 

for all papers published by a scientist up through the previous year).  Holding these factors 

constant, we observe no significant main effect of BITNET or DNS on quality. 

To assess whether the IT effect varies across subgroups of scientists, we once again 

interact the IT variables with gender, professional experience and employer ranking.  We find 

some notable differences between the quality results and those found in the earlier productivity 

models.  First, there is no evidence that women scientists benefit (in term of improved 

publication quality) from either BITNET or DNS significantly more than men (see columns 4 

and 5 of Table 4).  Second, early-career-stage scientists (those with 1-4 years of experience) gain 

most in terms of research quality from the availability of these technologies:  an 11% increase in 

the average journal impact factor when BITNET is available, and a 14% increase when DNS is 

available (see columns 6 and 7 of Table 4 and the middle panel of Figure 2).  Third, and contrary 
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to what we observed for research output, the quality-boosting effect of BITNET and DNS exists 

only for scientists at top-ranked (within top-25) universities, who enjoy an 11% gain when their 

universities adopt BITNET or DNS (see columns 8 and 9 of Table 4 and the middle panel of 

Figure 2).  

Effect of IT on Research Collaboration.  Our last set of models (see Table 5) concerns the 

effect of IT on collaboration patterns of scientists. For this purpose, we examine how the 

availability of IT changes the number of new co-authors on a project as evidenced by 

publications in a given year.
11

  Holding constant our standard control variables, we find that 

BITNET and DNS do not lead to significant changes in the number of new co-authors.  There 

are, however, substantial and significant differences in the effect of IT across subsets of the 

scientists in our sample.  

First, as in the case of research productivity, the effect of IT is significantly higher for 

women than for men (see columns 4 and 5 of Table 5).  In term of co-authors, women gain 14% 

(=exp[0.135]) more than men when their university has access to BITNET in the previous year, 

and 16% (=exp[0.150]) more than men, with access to DNS.  Second, breaking down the effects 

of BITNET and DNS by career stage, we find that early-to-mid-career scientists (with 1-14 years 

of experience) benefit from the adoption of these technologies at their campuses, but the IT 

effects on collaboration decrease significantly during the latter half of the career (see columns 6 

and 7 of Table 5 and the illustration in the bottom panel of Figure 2).  The effects are highly 

significant in the case of BITNET and weakly significant in the case of DNS.  IT is particularly 

instrumental in helping newly-minted Ph.D. researchers (with 1-4 years of experience) expand 

                       
11

 Although the maximum number of coauthor gain in a year (=170) may seem high, it is not unusual for life 

scientists to be part of a research team consisting of a few hundred people. Nonetheless, we tested our models in 

Table 5 by excluding the observations at the top 1% of the ―coauthor gain‖ variable. We found no meaningful 

difference from the results reported in Table 5. 
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their collaboration networks.  Lastly, scientists who are employed by mid-ranked universities 

enjoy a 13% boost in the number of new co-authors when BITNET becomes available at their 

universities. No statistically significant effect is found for DNS (see columns 8 and 9 of Table 5 

and the illustration in the bottom panel of Figure 2).  Scientists employed by universities outside 

the top 50 experience approximately a 7% gain in new co-authors when their employer adopted 

BITNET; this effect just misses being significant at the 5% level. 

VII. Conclusion 

The internet and other advancements in information technology (IT) are changing the 

practice of science.  Yet our knowledge concerning how advancements in IT have affected 

research productivity over time is limited.  In large part this is due to the absence of data linking 

information on the adoption of IT technology to the productivity of scientists.  Here we remedy 

this situation by creating a database that combines information on the diffusion of BITNET and 

the Domain Name System (DNS) with career history data on the publishing patterns of research-

active academic life scientists.  Three characteristics of publishing patterns are measured: counts 

of publications, quality of publications and an increase in co-authorship.  We test whether the 

adoption of IT by an institution enhanced the research of specific subgroups of the scientific 

labor force: (1) female faculty members, (2) faculty early in their careers, and (3) faculty at 

lower-tier institutions. 

Our novel approach involves determining the date that BITNET and DNS were adopted 

by each of the 430 institutions our sample of research-active life scientists worked at and relating 

their availability to three outcomes of the research process.  While we find no direct effect of IT, 

our findings support the hypotheses that the adoption of IT had differential effects on 



 

19 

productivity depending on a scientist’s individual characteristics and location. Specifically, 

women scientists benefitted more than their male colleagues in terms of overall output and an 

increase in new co-authors.  This is consistent with the idea that IT is especially beneficial to 

individuals who face greater mobility constraints.  Despite the plusses, IT was not able to boost 

the quality of women’s publications, suggesting that their new coauthors were located in lower-

tier institutions.  Second, late-career stage scientists did not benefit from the adoption of IT by 

their institutions while early-to-mid-career stage scientists—who likely were more willing and 

able to take advantage of the new technology—did in terms of research quantity, quality and 

collaboration networks.  Third, the tier of the research organization matters.  The availability of 

IT increased the productivity of scientists at mid-tier (and in some instances lower-tier) 

institutions.  This is consistent with the idea that faculty at mid-and-lower-tier institutions had 

relatively more to gain, having fewer in-house colleagues and resources, although some scientists 

at the lowest-tier institutions may be too isolated and resource-poor for IT to have made a 

significant difference, particularly in terms of the quality of research.  Finally, the most notable 

effects of IT are on collaboration and are consistent with the frequent inference that IT has been 

a major contributing factor to the increase in the number of co-authors in science observed since 

the 1980s.  

The gender and research tier results suggest that IT has been an equalizing force, at least 

in terms of the number of publications and gain in co-authorship, enabling scientists outside the 

inner circle to participate more fully.  We would be remiss if we did not point out research on 

policy innovations that have increased accessibility in science and thus had a similar effect on 

the practice of science.  Murray and her colleagues (2008), for instance, studied the impact of 

two Memoranda of Understanding (MOU) between Dupont and the National Institutes of Health 
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which removed many of the restrictions related to working with certain genetically engineered 

mice.  They found post-MOU citations to the original mouse articles to grow at a faster rate from 

institutions that had previously not done research with the mice than from institutions that had 

previously done research using the mice.  The logic for their finding is that prior to the MOUs, 

accessibility to mice was considerably more restricted by intellectual property protection.
 12

    As 

a second example, Furman and Stern (2009) studied the effect of biological research centers 

(BRCs)  by examining citations in articles written post-deposit to articles associated with 

materials which had been exogeneously shifted to a research center.  Consistent with a 

democratizing effect, they found the rate of citations from new institutions, new journals and 

new countries to increase post deposit. They also found that researchers at institutions outside the 

top 50 U.S. research universities benefitted more than those at the top 50 in terms of a post-

deposit citation boost to papers which used materials that had subsequently been transferred to a 

BRC.  The policy implication of this research on mice and BRCs, as well as of our own research 

on IT, is clear:  innovations that promote accessibility level the playing field and broaden the 

base of individuals doing science. 

                       
12

 Researchers at institutions where a colleague had either engineered a mouse or accessed a mouse were likely to 

share the benefits while researchers at institutions that did not have a mouse found access more difficult.  

Furthermore, agreements made prior to the MOU allowed follow-on research for all faculty at the institution. 
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Table 1  

Variable Definitions and Sources of Information 

Variable Name Description Source 

Research Productivity  
Number of research papers published by a scientist in a 

given year (publication flow) 
Web of Science 

Research Quality  
Average journal impact factor (JIF) for papers published 

by a scientist in a given year 
Web of Science 

Co-authorship Gain 

Increase in the number of new coauthors found in a 

scientist’s publications in a given year; for example, if A 

and B appear for the first time in year t as a coauthor to 

John Doe, Doe’s co-authorship gain value is 2 in year t; 

however, if A and B have appeared in Doe’s papers 

before year t, they are not counted as a co-authorship gain 

for year t 

Web of Science 

Professional Experience 
Number of years elapsed from the year a scientist 

receives his Ph.D. degree 

UMI Proquest 

Dissertations 

Female 1 = Yes; 0 = No Naming convention 

Number of Jobs 
Number of employers for which a scientist has worked 

between Ph.D. grant year and the current year 
Web of Science 

Publication Stock 
Number of research papers published by a scientist 

between Ph.D. grant year and the current year 
Web of Science 

Avg. JIF of all past 

publications 

Average journal impact factor (JIF) for the papers 

published by a scientist between his Ph.D. grant year and 

the current year 

Web of Science; Journal 

Citation Reports 

Average Citation Count 

Predicted number of citations received per paper for all 

papers published by a scientist between his Ph.D. grant 

year and the current year; approximations are used to 

construct this variable (details on page 13)   

Web of Science 

Past 5-year co-authoring ties 

Number of co-authorship dyads in papers published by a 

scientist between t-5 and t; for a paper written by a 

scientist with two coauthors, two co-authorship dyads are 

counted; we then sum up the dyads in all papers by the 

scientist during the past five years, regardless of whether 

the scientist has repeated collaboration relations with 

certain coauthors 

Web of Science 

Employer rank 
Ranking categories of employer university (1-25, 26-50 

or outside of top 50) 
The Gourman Reports 

BITNET 1 = Employer university has adopted Bitnet; 0=otherwise Atlas of Cyberspace 

DNS 1 = Employer university has adopted DNS; 0 = otherwise ALLWHOIS 

Ph.D. subject field Field in which a scientist is awarded his Ph.D. degree 
UMI Proquest 

Dissertation 

Year Calendar year  
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Table 2 

Descriptive Statistics 

Variable Name Mean 
Standard 

Deviation 
Min Max 

Research Productivity (Publication flow) 1.587 2.208 0 35 

Research Quality (Avg journal impact factor) 2.503 3.148 0 24.59 

Co-authorship Gain 2.308 4.273 0 170 

Professional Experience 8.344 5.762 1 26 

Female 0.179 0.383 0 1 

Number of Jobs 1.335 0.573 1 5 

Publication Stock 13.037 19.785 0 298 

Avg. JIF of all past publications 3.325 2.773 0 24.59 

Average Citation Count 12.202 18.805 0 1270.1 

Past 5-year co-authoring ties 18.201 29.165 0 688 

Employer rank 1-25 0.273 0.445 0 1 

Employer rank 26-50 0.144 0.351 0 1 

Employer rank outside 50 0.583 0.493 0 1 

BITNET 0.332 0.471 0 1 

DNS 0.240 0.427 0 1 

Year 1983.3 6.266 1968 1993 
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Table 3  

Poisson Quasi-Maximum-Likelihood Estimate of Effect of Information Technology on Research Productivity 

 (1) (2) (3) (4) (5) (6) (7) (8) (8) 

Experience = 5-8 years 
0.055 0.053 0.053 0.052 0.053   0.049 0.048 

(0.021)
**

 (0.021)
*
 (0.022)

*
 (0.021)

*
 (0.022)

*
   (0.021)

*
 (0.022)

*
 

Experience = 9-14 years 
0.120 0.118 0.118 0.117 0.117   0.109 0.108 

(0.037)
**

 (0.037)
**

 (0.037)
**

 (0.037)
**

 (0.037)
**

   (0.037)
**

 (0.037)
**

 

Experience = 15-20 years 
-0.064 -0.067 -0.067 -0.066 -0.067   -0.080 -0.081 

(0.044) (0.045) (0.045) (0.045) (0.045)   (0.044)
†
 (0.044)

†
 

Experience = 21-26 years 
-0.237 -0.240 -0.240 -0.237 -0.237   -0.256 -0.258 

(0.058)
**

 (0.058)
**

 (0.058)
**

 (0.058)
**

 (0.058)
**

   (0.058)
**

 (0.057)
**

 

Female 
-0.155 -0.155 -0.155 -0.197 -0.185 -0.157 -0.155 -0.154 -0.154 

(0.034)
**

 (0.034)
**

 (0.034)
**

 (0.041)
**

 (0.039)
**

 (0.034)
**

 (0.034)
**

 (0.033)
**

 (0.033)
**

 

Number of jobs 
0.157 0.158 0.158 0.158 0.158 0.162 0.162 0.155 0.154 

(0.026)
**

 (0.026)
**

 (0.025)
**

 (0.026)
**

 (0.025)
**

 (0.028)
**

 (0.027)
**

 (0.025)
**

 (0.025)
**

 

Publication Stockt-1 

0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 

(0.001)
**

 (0.001)
**

 (0.001)
**

 (0.001)
**

 (0.001)
**

 (0.001)
**

 (0.001)
**

 (0.001)
**

 (0.001)
**

 

Average Citation Countt-1 

0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

(0.001)
*
 (0.001)

*
 (0.001)

*
 (0.001)

*
 (0.001)

*
 (0.001)

*
 (0.001)

*
 (0.001)

*
 (0.001)

*
 

Past 5-year co-authoring tiest-1 

0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 

(0.001)
**

 (0.001)
**

 (0.001)
**

 (0.001)
**

 (0.001)
**

 (0.001)
**

 (0.001)
**

 (0.001)
**

 (0.001)
**

 

Employer rank 26-50 
0.043 0.044 0.045 0.044 0.045 0.046 0.045   

(0.037) (0.037) (0.036) (0.037) (0.036) (0.037) (0.037)   

Employer rank outside top 50 
-0.057 -0.049 -0.049 -0.049 -0.049 -0.049 -0.046   

(0.030)
†
 (0.029)

†
 (0.028)

†
 (0.029) (0.028)

†
 (0.030) (0.029)   

BITNETt-1 

 0.034 0.034 0.018 0.034  0.037  0.048 

 (0.030) (0.027) (0.033) (0.027)  (0.027)  (0.028)
†
 

DNSt-1 

  0.0004  -0.015     

  (0.037)  (0.039)     

Female × BITNETt-1 

   0.102      

   (0.048)
*
      

Female × DNSt-1 

    0.099     

    (0.048)
*
     

Exp 1-4 years × BITNETt-1 
     0.022    

     (0.049)    

Exp 5-8 years × BITNETt-1      0.054    



 

27 

     (0.036)
 

   

Exp 9-14 years × BITNETt-1 
     0.147    

     (0.034)
**

    

Exp 15-20 years × BITNETt-1 
     -0.046    

     (0.046)
 

   

Exp 21-26 years × BITNETt-1 
     -0.190    

     (0.078)
*
    

Exp 1-4 years × DNSt-1 
      0.016   

      (0.061)   

Exp 5-8 years × DNSt-1 
      0.023   

      (0.046)   

Exp 9-14 years × DNSt-1 
      0.145   

      (0.034)
**

   

Exp 15-20 years × DNSt-1 
      -0.071   

      (0.057)   

Exp 21-26 years × DNSt-1 
      -0.196   

      (0.087)
*
   

Employer rank 1-25 × BITNETt-1 
       0.011  

       (0.051)  

Employer rank 26-50 × BITNETt-1 
       0.162  

       (0.040)
**

  

Employer outside 50 × BITNETt-1 
       0.061  

       (0.031)
†
  

Employer rank 1-25 × DNSt-1 
        -0.051 

        (0.064) 

Employer rank 26-50 × DNSt-1 
        0.140 

        (0.042)
**

 

Employer outside 50 × DNSt-1 
        0.041 

        (0.034) 

Constant 
-0.666 -0.672 -0.672 -0.668 -0.670 -0.678 -0.680 -0.695 -0.694 

(0.208)
**

 (0.208)
**

 (0.208)
**

 (0.208)
**

 (0.208)
**

 (0.208)
**

 (0.208)
**

 (0.205)
**

 (0.205)
**

 

Log Pseudo-Likelihood -77781.3 -77776.7 -77776.7 -77765.2 -77767.1 -77853.4 -77866.4 -7777.2 -77765.7 

Wald Chi2 2758.9 2808.4 2809.0 2791.0 2804.8 2188.9 2304.4 2930.9 3018.2 

Number of covariates 43 44 45 45 46 44 45 44 45 

Notes: (1) Number of observations = 46,301; number of researchers = 3,771; number of institutions = 430. (2) All models control for calendar year dummies and 

Ph.D. subject field dummies. (3) Robust standard errors in parentheses, clustered around scientists. (4) 
†
 significant at 10%; 

*
 significant at 5%; 

**
 significant at 

1%.
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Table 4 

Poisson Quasi-Maximum-Likelihood Estimate of Effect of Information Technology on Research Quality 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) 

Experience = 5-8 years 
-0.185 -0.184 -0.184 -0.184 -0.184   -0.191 -0.192 

(0.018)
** 

(0.018)
** 

(0.018)
** 

(0.018)
** 

(0.018)
**   

(0.018)
** 

(0.018)
** 

Experience = 9-14 years 
-0259 -0257 -0257 -0257 -0257   -0269 -0271 

(0.024)
** 

(0.024)
** 

(0.024)
** 

(0.024)
** 

(0.024)
** 

  (0.024)
** 

(0.024)
** 

Experience = 15-20 years 
-0.346 -0.344 -0.344 -0.344 -0.344   -0.357 -0.359 

(0.032)
**

 (0.032)
**

 (0.032)
**

 (0.032)
**

 (0.032)
**

   (0.032)
**

 (0.033)
**

 

Experience = 21-26 years 
-0.420 -0.418 -0.418 -0.418 -0.418   -0.431 -0.432 

(0.051)
**

 (0.051)
**

 (0.051)
**

 (0.051)
**

 (0.051)
**

   (0.051)
**

 (0.051)
**

 

Female 
-0.046 -0.046 -0.046 -0.046 -0.047 -0.036 -0.034 -0.046 -0.045 

(0.021)
*
 (0.021)

*
 (0.021)

*
 (0.026)

†
 (0.024)

*
 (0.022)

†
 (0.022) (0.021)

*
 (0.021)

*
 

Number of jobs 
0.108 0.107 0.107 0.107 0.107 0.076 0.073 0.107 0.106 

(0.015)
**

 (0.015)
**

 (0.015)
**

 (0.015)
**

 (0.015)
**

 (0.015)
**

 (0.015)
**

 (0.015)
**

 (0.015)
**

 

Publication Stockt-1 

-0.001 -0.001 -0.001 -0.001 -0.001 -0.002 -0.003 -0.001 -0.001 

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
**

 (0.001)
**

 (0.001) (0.001) 

Avg. JIF of all past publicationst-1 

0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.088 0.088 

(0.003)
**

 (0.003)
**

 (0.003)
**

 (0.003)
**

 (0.003)
**

 (0.003)
**

 (0.003)
**

 (0.003)
**

 (0.003)
**

 

Average Citation Countt-1 

0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 

(0.0004)
**

 (0.0004)
**

 (0.0004)
**

 (0.0004)
**

 (0.0004)
**

 (0.0003)
**

 (0.0003)
**

 (0.0004)
**

 (0.0004)
**

 

Past 5-year co-authoring tiest-1 

0.005 0.005 0.005 0.005 0.005 0.006 0.006 0.005 0.005 

(0.001)
**

 (0.001)
**

 (0.001)
**

 (0.001)
**

 (0.001)
**

 (0.001)
**

 (0.001)
**

 (0.001)
**

 (0.001)
**

 

Employer rank 26-50 
-0.082 -0.084 -0.084 -0.084 -0.084 -0.088 -0.090   

(0.024)
**

 (0.024)
**

 (0.024)
**

 (0.023)
**

 (0.024)
**

 (0.024)
**

 (0.024)
**

   

Employer rank outside top 50 
-0.154 -0.160 -0.161 -0.160 -0.161 -0.176 -0.179   

(0.019)
**

 (0.019)
**

 (0.019)
**

 (0.019)
**

 (0.019)
**

 (0.019)
**

 (0.019)
**

   

BITNETt-1 

 -0.027 -0.023 -0.027 -0.023  -0.036  0.012 

 (0.021) (0.022) (0.022) (0.022)  (0.022)  (0.022) 

DNSt-1 

  -0.009  -0.010     

  (0.024)  (0.025)     

Female × BITNETt-1 

   -0.001      

   (0.035)      

Female × DNSt-1 

    0.004     

    (0.037)     

Exp 1-4 years × BITNETt-1 
     0.101    

     (0.036)
**
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Exp 5-8 years × BITNETt-1 
     -0.031    

     (0.029)    

Exp 9-14 years × BITNETt-1 
     -0.045    

     (0.024)
†
    

Exp 15-20 years × BITNETt-1 
     -0.107    

     (0.030)
**

    

Exp 21-26 years × BITNETt-1 
     -0.186    

     (0.045)
**

    

Exp 1-4 years × DNSt-1 
      0.135   

      (0.044)
**

   

Exp 5-8 years × DNSt-1 
      -0.031   

      (0.037)   

Exp 9-14 years × DNSt-1 
      -0.011   

      (0.028)   

Exp 15-20 years × DNSt-1 
      -0056   

      (0.032)
†
   

Exp 21-26 years × DNSt-1 
      -0.124   

      (0.045)
**

   

Employer rank 1-25 × BITNETt-1 
       0.107  

       (0.026)
**

  

Employer rank 26-50 × BITNETt-1 
       0.037  

       (0.031)  

Employer outside 50 × BITNETt-1 
       -0.056  

       (0.026)
*
  

Employer rank 1-25 × DNSt-1 
        0.100 

        (0.030)
**

 

Employer rank 26-50 × DNSt-1 
        0.041 

        (0.037) 

Employer outside 50 × DNSt-1 
        -0.044 

        (0.029) 

Constant 
0.490 0.494 0.4994 0.494 0.494 0.529 0.533 0.381 0.382 

(0.199)
*
 (0.199)

*
 (0.199)

*
 (0.199)

*
 (0.199)

*
 (0.199)

**
 (0.198)

**
 (0.199)

†
 (0.199)

†
 

Log Pseudo-Likelihood -115335.3 -115330.9 -115330.6 -115330.9 -115330.6 -115737.2 -115763.3 -115483.9 -115528.0 

Wald Chi2 2059.7 2077.6 2078.8 2079.7 2080.5 2049.5 2045.6 1977.6 1959.9 

Number of covariates 44 45 46 46 47 45 46 45 46 

Notes: (1) Number of observations = 46,301; number of researchers = 3,771; number of institutions = 430. (2) All models control for calendar year dummies and 

Ph.D. subject field dummies. (3) Robust standard errors in parentheses, clustered around scientists. (4) 
†
 significant at 10%; 

*
 significant at 5%; 

**
 significant at 

1%.
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Table 5  

Poisson Quasi-Maximum-Likelihood Estimate of Effect of Information Technology on Co-authorship Gain 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) 

Experience = 5-8 years 
0.100 0.096 0.097 0.094 0.096   0.094 0.094 

(0.027)
**

 (0.027)
**

 (0.027)
**

 (0.027)
**

 (0.027)
**

   (0.027)
**

 (0.027)
**

 

Experience = 9-14 years 
0.133 0.127 0.129 0.126 0.128   0.124 0.124 

(0.042)
**

 (0.043)
**

 (0.044)
**

 (0.043)
**

 (0.043)
**

   (0.043)
**

 (0.043)
**

 

Experience = 15-20 years 
-0.040 -0.046 -0.045 -0.046 -0.045   -0.051 -0.053 

(0.047) (0.048) (0.048) (0.048) (0.048)   (0.047) (0.047) 

Experience = 21-26 years 
-0.207 -0.213 -0.212 -0.209 -0.207   -0.220 -0.222 

(0.072)
** 

(0.072)
**

 (0.072)
**

 (0.072)
**

 (0.073)
**

   (0.072)
**

 (0.072)
**

 

Female 
-0.087 -0.087 -0.087 -0.150 -0.141 -0.093 -0.091 -0.087 -0.086 

(0.038)
*
 (0.038)

*
 (0.038)

*
 (0.049)

**
 (0.046)

**
 (0.039)

*
 (0.039)

*
 (0.038)

*
 (0.038)

*
 

Number of jobs 
0.172 0.174 0.173 0.173 0.173 0.186 0.181 0.172 0.171 

(0.031)
**

 (0.030)
**

 (0.030)
**

 (0.030)
**

 (0.030)
**

 (0.033)
**

 (0.032)
**

 (0.030)
**

 (0.029)
**

 

Publication Stockt-1 

0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 

(0.001)
*
 (0.001)

*
 (0.001)

*
 (0.001)

*
 (0.001)

*
 (0.001)

*
 (0.001)

*
 (0.001)

*
 (0.001)

*
 

Average Citation Countt-1 

0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 

Past 5-year co-authoring tiest-1 

0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 

(0.001)
**

 (0.001)
**

 (0.001)
**

 (0.001)
**

 (0.001)
**

 (0.001)
**

 (0.001)
**

 (0.001)
**

 (0.001)
**

 

Employer rank 26-50 
0.025 0.028 0.027 0.028 0.027 0.034 0.032   

(0.042) (0.042) (0.041) (0.042) (0.041) (0.043) (0.042)   

Employer rank outside top 50 
-0.031 -0.016 -0.021 -0.016 -0.021 -0.012 -0.013   

(0.035) (0.032) (0.032) (0.032) (0.032) (0.033) (0.032)   

BITNETt-1 

 0.058 0.074 0.035 0.074  0.082  0.081 

 (0.039) (0.033)
*
 (0.042) (0.034)

*
  (0.034)

*
  (0.033)

*
 

DNSt-1 

  -0.037  -0.062     

  (0.041)  (0.044)     

Female × BITNETt-1 

   0.135      

   (0.057)
*
      

Female × DNSt-1 

    0.150     

    (0.055)
**

     

Exp 1-4 years × BITNETt-1 
     0.205    

     (0.059)
**

    

Exp 5-8 years × BITNETt-1      0.132    
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     (0.043)
**

    

Exp 9-14 years × BITNETt-1 
     0.140    

     (0.042)
**

    

Exp 15-20 years × BITNETt-1 
     -0.055    

     (0.062)    

Exp 21-26 years × BITNETt-1 
     -0.185    

     (0.077)
 *
    

Exp 1-4 years × DNSt-1 
      0.116   

      (0.067)
†
   

Exp 5-8 years × DNSt-1 
      0.094   

      (0.051)
†
   

Exp 9-14 years × DNSt-1 
      0.069   

      (0.042)   

Exp 15-20 years × DNSt-1 
      -0.137   

      (0.068)
*
   

Exp 21-26 years × DNSt-1 
      -0.291   

      (0.078)
**

   

Employer rank 1-25 × BITNETt-1 
       0.043  

       (0.058)  

Employer rank 26-50 × BITNETt-1 
       0.125  

       (0.048)
**

  

Employer outside 50 × BITNETt-1 
       0.067  

       (0.040)
†
  

Employer rank 1-25 × DNSt-1 
        -0.067 

        (0.064) 

Employer rank 26-50 × DNSt-1 
        0.038 

        (0.051)
 

Employer below 50 × DNSt-1 
        -0.015 

        (0.040) 

Constant 
-2.133 -2.144 -2.140 -2.138 -2.135 -2.158 -2.153 -2.149 -2.148 

(0.571)
**

 (0.571)
**

 (0.571)
**

 (0.571)
**

 (0.571)
**

 (0.571)
**

 (0.571)
**

 (0.570)
**

 (0.570)
**

 

Log Pseudo-Likelihood -116978.4 -116957.5 -116952.3 -116925.6 -116915.3 -117020.1 -117015.5 -116949.5 -116939.5 

Wald Chi2 3612.6 3702.6 3709.9 3690.0 3720.6 2921.0 3044.0 3771.8 3788.2 

Number of covariates 43 44 45 45 46 44 45 44 45 

Notes: (1) Number of observations = 46,301; number of researchers = 3,771; number of institutions = 430. (2) All models control for calendar year dummies and 

Ph.D. subject field dummies. (3) Robust standard errors in parentheses, clustered around scientists. (4) 
†
 significant at 10%; 

*
 significant at 5%; 

**
 significant at 

1%. 
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Fig.1 Diffusion of BITNET and DNS 

  

Legend. Cumulative percentage of institutions adopting BITNET and DNS. Diffusion patterns 

are graphed for all institutions (black with squares), institutions ranked in top-25 (red with 

circles), institutions ranked between 26 and 50 (light blue with triangles), and institutions not 

ranked (dark blue with diamonds), by the Gourman Report.
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Fig.2. Effects of BITNET and DNS on Scientists’ Research Patterns 

 

Legend. Effect g implies predicted count of publication flow (productivity), average journal impact 

factor for publication flow (quality) and gain in new co-authors (collaboration pattern) changes by a 

factor of g (or [g-1]*100 percent) when BITNET or DNS becomes available to a scientist in a specified 

group. 95% confidence intervals of the estimates are indicated by the caps on the spikes. Predictors are 

statistically significant at the 5% level if 1.0 falls outside the confidence interval. (Full regression results 

are provided in models 6-9 of tables 2, 4 and 5).  
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Appendix 1. Sample Representativeness 

We randomly drew scientists’ names from UMI’s Proquest Dissertations Database, which 

includes the names, fields, and degree-granting institutions for almost all doctoral degree 

recipients from accredited U.S. universities. The field and degree years sampled were chosen in 

proportions that matched the distribution of Ph.D. fields and graduation years for faculty serving 

on the Scientific Advisory Board (SAB) of biotechnology companies that made initial public 

offerings between the years 1970 and 2002.  The sampling frame was structured in this way 

because the initial research project was designed to study university faculty members’ 

engagement in the commercialization of academic science. 

Table A1 reports, in order of their representation in the sample, the 15 scientific 

disciplines that appear most frequently in our data.  To determine the degree to which our sample 

reflects the underlying population of life scientists, we compare these fields to NSF data (see 

Column 4).  We first note that with the exception of organic chemistry and psychobiology, all 

fields are considered to be in the life, or related sciences, according to NSF’s standardized codes 

used in SESTAT (see http://sestat.nsf.gov/docs/educode2.html for detailed information of the 

fields in this group).  We also compare the distribution of degrees in our sample to the 

classification and distribution of degrees awarded at U.S. universities between 1965 and 1990 as 

measured in the Survey of Earned Doctorates (SED).  See Column (5).  We find that, with the 

exception of organic chemistry, psychobiology and health sciences/pharmacy, our fields are 

classified by the SED as part of the life sciences.  Column (6) of the table reports the ranking of a 

field in terms of degrees awarded during the period as reported by the SED.  We find 

considerable, although not complete overlap, between our top fields and SED’s top fields.  For 

example, biochemistry contributes the largest number of cases to our sample (23%) and it is also 

the field in the life sciences with the largest number of doctoral awards in the SED data from 

1965 to 1990.  The second largest group of doctoral awards in the SED data is microbiology, 

which ranks third in our data.  We conclude that our sample does not differ markedly from the 

underlying population of life scientists working in academe.  To the extent that there is a bias, it 

is towards fields that are at the forefront of technological developments.  We see this as an 

advantage in our study since scientists in such fields tend to have more extensive information 

about new technologies (including innovations in IT) and thus may be more disposed to put them 

to use.   

 

 
 
 
 
 
 

http://sestat.nsf.gov/docs/educode2.html
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Table A1  

Top 15 Scientific Disciplines in the Sample 

(1) (2) (3) (4) (5) (6) 

UMI Ph.D.  

Subject Code 
UMI Subject Description 

Frequency and 

Share in Sample 

Classified as “Life 

and Related 

Sciences” by NSF 

in SESTAT
† 

Classified as 

“Life 

Sciences” in 

SED
†† 

Rank in SED 

Based on 

Representation 

487; 303 Biochemistry 845 (22.8%) Yes Yes 1  

306 Biology, General 563 (15.2%) Yes Yes 7  

410 Biology, Microbiology 455 (12.3%) Yes Yes 2  

419 
Health Sciences, 

Pharmacology 
234 (6.3%) Yes Yes 5  

786 Biophysics, General 208 (5.6%) Yes Yes 16  

490 Chemistry, Organic 198 (5.3%) No No --- 

369 Biology, Genetics 175 (4.7%) Yes Yes 15  

433 Biology, Animal Physiology 166 (4.5%) Yes Yes 3  

982 
Health Sciences, 

Immunology 
152 (4.1%) Yes Yes 18  

307 Biology, Molecular 67 (1.8%) Yes Yes 6 

301 Bacteriology 61 (1.6%) Yes Yes 42 

287 Biology, Anatomy 53 (1.4%) Yes Yes 14 

571 Health Sciences, Pathology 51 (1.4%) Yes Yes 24 

349 Psychology, Psychobiology 36 (1.0%) No No --- 

572 Health Sciences, Pharmacy 33 (0.9%) Yes No --- 

 
† 
Source: ―Education Code and Groups‖, http://sestat.nsf.gov/docs/educode2.html; NSF codes are more broadly 

defined, and some of the subfields are grouped into the ―Other‖ category, e.g., bacteriology (301), anatomy (287)  

health sciences-immunology (982), and health sciences-pathology (571).
††

Source: Statistical tables based on NSF’s 

Survey of Earned Doctorates (1965-1990) reported in Science and Engineering Doctorates: 1960-1986 (NSF 88-303) 

and Selected Data on Science and Engineering Doctorate Awards: 1994 (NSF 95-337). There is no ―health sciences‖ 

category in SED, but some of the fields listed under ―health sciences‖ in our (UMI Proquest) sample do correspond to 

SED’s subfields under ―biological sciences.‖  For example, health sciences-pharmacology (419) in our data 

corresponds to  SED’s human/animal pharmacology; health sciences-immunology (982) corresponds to SED’s 

biological immunology; health sciences-pathology (571) corresponds to SED’s human/animal pathology. 

http://sestat.nsf.gov/docs/educode2.html

