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GMM Estimation of a Maximum

Distribution With Interval Data

Abstract

We develop a GMM estimator for the distribution of a variable where sum-
mary statistics are available only for intervals of the random variable. Without
individual data, once cannot calculate the weighting matrix for the GMM esti-
mator. Instead, we propose a simulated weighting matrix based on a first-step
consistent estimate. When the functional form of the underlying distribution is
unknown, we estimate it using a simple yet flexible maximum entropy density.
our Monte Carlo simulations show that the proposed maximum entropy den-
sity is able to approximate various distributions extremely well. The two-step
GMM estimator with a simulated weighting matrix improves the efficiency of
the one-step GMM considerably. We use this method to estimate the U.S. in-
come distribution and compare these results with those based on the underlyign
raw income data.
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proposed maximum entropy density is able to approximate various distributions 
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Introduction 

 Economists often want to estimate the distribution of a variable for which they have only 

summary statistics.  Although we can use existing methods to recover the distribution when 

summary statistics for the entire distribution are available, often summary statistics are available 

only for intervals of the random variable.  We introduce new methods to estimate a distribution 

when only limited information about intervals or ranges is available. 

   An important application of our technique is the estimation of income distributions as 

many government agencies report summary statistics for only some ranges of the income 

distribution: the income distribution is divided into a fixed number of intervals and only the 

share and sometimes the conditional mean of each interval are reported (see for example, Wu 

and Perloff, 2004 on the Chinese income distribution).  Similarly, many governments provide 

only aggregated data on the distribution of firm size.  For example, the U.S. government reports 

the market shares for only the 4, 8, 20, and 50 largest firms and the Herfindahl-Hirschman Index 

(sum of squared market shares) for the 50 largest firms.1  Also, contingent valuation studies 

typically estimate the distribution of willingness-to-pay or willingness-to-accept based on 

answers to hypothetical dichotomous-choice questions.  Consequently, estimating the underlying 

distribution is not possible using traditional approaches. 

 We propose a generalized method of moments (GMM) approach to estimate the 

underlying distribution based on summary statistics by intervals.  Because we do not have 

individual data to calculate the weighting matrix for the GMM estimator, we simulate a 

weighting matrix based on consistent first-step estimates.  We illustrate the properties of our 

                                                 

1 Golan, Judge, and Perloff (1996) estimated firm size distribution based on these market 
concentration indices using maximum entropy techniques. 
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approach using Monte Carlo experiments and an experiment based on real-world data.  Our 

experiments show that this GMM estimator with a simulated weighting matrix is substantially 

more efficient than the one-step GMM estimator and as efficient as the maximum likelihood 

estimator when it is feasible. 

 Because the functional form of the underlying distribution is usually unknown, we use a 

maximum entropy (maxent) density to approximate it.  The maxent approach is a method to 

assign values to probability distributions based on limited information.  Because the maxent 

density belongs to the exponential family, one can use some generalized moment conditions to 

summarize the distribution completely.  These characterizing moments are sufficient statistics of 

the distribution.  We propose a simple, yet flexible maxent density with a small number of 

characterizing moments.  Our Monte Carlo simulations show the proposed maxent density is 

flexible enough to approximate closely various distributions that are skewed, fat-tailed, or even 

multi-modal. 

 In next section, we develop the GMM density estimator with a simulated weighting 

matrix based on interval summary statistics.  Next, we introduce the maxent density approach to 

approximate the unknown underlying distribution.  We then use Monte Carlo simulations to 

show that our approach works well.  Finally, we apply this method to raw income data from the 

1999 U.S. family income distribution and show that we can approximate the underlying 

distribution closely using only a limited amount of summary statistics by intervals.  We find that 

our estimates successfully capture the features of the empirical distribution.  The last section 

presents a summary and conclusions. 
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Estimation of Known Distributions 

We first develop a GMM estimator of distributions based on interval data when the 

distribution is known.  Let x be an i.i.d. random sample of size N from a continuous distribution 

( ; )f x θ  defined over a support I.  We suppose that I is divided into K mutually exclusive and 

exhaustive intervals Ik, k = 1,2,…,K .  We denote nk and kμ as the frequency and conditional 

mean of the sample x in the kth interval.  In this section, we assume that we know the functional 

form of ( ; )f x θ .  We want to estimate θ, the vector of shape parameters.  

One-Step GMM Estimator  

If the only known information about f(x; θ) is nk, one can estimate f(x; θ) using the 

maximum likelihood estimator (MLE).  It is well known that the frequency table is distributed 

according to a multinomial distribution, and the likelihood function takes the form 

 ( ) ( )
1

!
!

kn
K

k

k k

P
L N

n=

⎡ ⎤⎣ ⎦= ∏
θ

θ , 

where and 
1

K
kk

N n
=

= ∑ ( ) ( );
k

k I
P f x= ∫θ θ dx .  

Alternatively, one can use a GMM estimator.  To ensure identification, the dimension of 

must be no greater than K.  Denote θ [ ]1 2, ,..., 'Km m m=m  where 

( ) , 1,2,...,k k km P s k K= − =θ  

and .  The objective function of the one-step GMM, which we call GMM/k ks n N= 1, is 

 ( ) ( ) ( )
1

'GMMQ =θ m θ m θ . 
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If the conditional mean for each group is also known, it is impractical to use the MLE as 

the likelihood function is too complicated.  However, we can still use the GMM estimator.  The 

moment conditions now take the form 

 
( )
( )

, 1, 2,...,k k
k

k k

P s
m k

μ μ
−⎡ ⎤

= =⎢ ⎥−⎣ ⎦

θ
θ

K , (1) 

where ( ) ( );
k

k I
xf x dxμ = ∫θ θ . 

 We can easily apply this method of moments approach to accommodate other forms of 

information by intervals, such as higher-order moments, order statistics, Gini indexes, and so on.  

Therefore, the GMM1 approach to estimating a distribution based on interval data is much more 

flexible than the MLE. 

Two-Step GMM Estimator with Simulated Weighting Matrix 

 Although the GMM1 can incorporate more information than the MLE, it is generally not 

efficient unless its optimal weighting matrix Ω  coincidentally equals the identity matrix.  To 

gain efficiency, one can estimate a two-step GMM estimator (GMM2), which is obtained by 

minimizing  

 ( ) ( ) ( )
2

'GMMQ =θ m θ Ωm θ . 

Denote the variance-covariance matrix of the moment conditions ( )m θ  as W, the optimal choice 

of the weighting matrix is . 1−=Ω W

However because we have only interval data, we are not able to calculate the variance-

covariance matrix of the moment conditions and hence cannot use the GMM2 estimator.  Instead, 

we propose a method of simulating the weighting matrix based on the first-step estimates.  Since 

the one-step GMM1 estimate is consistent, so is the simulated weighting matrix based on 
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( 1

ˆ; GMMf x θ )

)

.  Therefore, like the conventional two-step GMM2, our alternative simulation 

approach, GMMs is asymptotically efficient.  Our simulations suggest that the GMMs estimator 

obtains the same level of efficiency as do the MLE and the more data-intensive GMM2 

procedures.  

 We first consider the case where we lack the conditional means, so that we can use the 

MLE approach practically, and then we consider the more complicated case where we also have 

additional information such as conditional means.  Given the density function ( ;f x θ , the MLE 

based on the multinomial distribution is efficient when only interval share, or the frequency table, 

is known.  For the GMM2 estimator, we need to calculate the weighting matrix.  Because a 

frequency table is the sufficient statistics of a multinomial distribution, we do not need x to 

compute its variance covariance matrix, which is given by2

 

1

2

0 0
0

0
0 0 K

s
s

s

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

W . (2) 

The resulting GMM estimator is a minimum chi-square estimator. 

Instead of using the asymptotically optimal weighting matrix, one can use a simulated 

weighting matrix.  To obtain the simulated weighting matrix, we do the following: 

1. Draw an i.i.d. random sample of size N from the GMM*x 1 estimate ; ( )1
ˆ; GMMf x θ

2. Group in the same way as the original interval data and calculate the frequency table 

; 

*x

*s

                                                 

2 The derivation of this variance covariance matrix can be found in the typical treatment of chi-
square goodness-of-fit test of grouped data (see, for example, Agresti, 1990). 
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3. Calculate the variance-covariance matrix of s* as in Equation (2). 

This procedure is repeated B times and the weighting matrix is the average of the simulated 

weighting matrices: 

 ( )( ) 1
*

1

1 .
B

b
bB

*
−

=

= ∑Ω W  (3) 

Our new GMM estimator with simulated weighting matrix (GMMs) is then defined by 

minimizing 

( ) ( )' * .
sGMMQ = m θ Ω m θ  

 
We now turn to the more complicated case where the conditional mean of each interval is 

also used.  Now, we are not able to calculate the asymptotic weighting matrix for the GMM2, 

which requires knowledge of the full sample.  Nonetheless, the GMMs is still applicable and 

should be more efficient than the GMM1.  In this case, we obtain the simulated weighting matrix 

by using an alternative three-step procedure: 

1. Draw an i.i.d. random sample of size N from the GMM*x 1 estimate ; ( )1

ˆ; GMMf x θ

2. Group  in the same way as the original grouped data and calculate the frequency 

table  and conditional mean ; 

*x

*s *μ

3. Define , ( ) 1kD x = kx I∈  and 0 otherwise, and 

 . (4) 
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This procedure is repeated B times and the simulated weighting matrix is then calculated as in 

Equation (3).  Because the direct calculation of the weighting matrix in Equation (4) requires 

individual data, the conventional two-step GMM2 is infeasible when only interval summary 

statistics are available. 

Large Sample Properties 

 The proposed GMM estimators share the same large sample properties of the standard 

GMM estimator (see for example, Newey and McFacdden, 1994). 

Assumptions: For ( ) ( ) ( )ˆ ˆˆ ˆ'n n nQ =θ m θ Ωm θ ,  

(a) , which is compact, is the unique solution to the moment condition 

;   

0 interior ( )∈θ Θ

0( )E ,ix =⎡ ⎤⎣ ⎦m θ

(b)  is continuous on  and for all ( )nm θ Θ ∈θ Θ  it is twice continuously differentiable in 

a neighborhood N of ;  0θ

(c) ;  ( )E sup || , ||x∈ < ∞⎡ ⎤⎣ ⎦θ Θ m θ

(d) , Ω  is positive semi-definite;  ˆ P⎯⎯→Ω Ω

(e) ( ) ( )0ˆ 0,d
nn N⎯⎯→m θ W ;  

(f)  is continuous at  and ( )G θ 0θ ( ) ( )ˆsup || || 0P
n∈ ∇ − ⎯⎯→θ Ν θm θ G θ , where ( )ˆ n∇θm θ  

is the gradient of ;  ( )ˆ nm θ
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(g) ( ) ( )0 'G θ ΩG θ0  is nonsingular;  

(h) ( ) 1ˆplim −= =Ω Ω W . 

Under assumptions (a)-(g), all GMM estimators discussed in this study are asymptotically 

normal with 

 ( ) ( ) ( )1 1
0

ˆ 0, 'dn N − −⎡ ⎤− ⎯⎯→ ⎣ ⎦θ θ G'ΩG G'Ω WΩG G'ΩG . 

For the GMM1, Ω  is the identity matrix and the asymptotic variance covariance matrix is 

.  Because it satisfies assumption (a)-(h), the GMM( ) (1 G ) 1− −G'G G'WG 'G 2 (when it is feasible), 

is asymptotically efficient with 

( ) ( ) 11
0

ˆ 0,dn N
−−⎡ ⎤− ⎯⎯→ ⎢ ⎥⎣ ⎦

θ θ G'W G . 

By construction, the simulated weighting matrix of the GMM*Ω s based on first-step consistent 

estimate converges asymptotically to the optimal weighting matrix 1−W .  Therefore, the GMMs 

also satisfies assumption (a)-(h) and attains the same asymptotic efficiency as that of the GMM2.  

Approximation of Unknown Distributions via Maximum Entropy Densities 

Very often the functional form of the underlying density is unknown, and various 

parametric densities are used to approximate the unknown density.  For example, the log-normal 

density is a popular choice to model the income distribution.  Instead of relying on a limited 

collection of known densities, we propose to use the maximum entropy (maxent) densities for 

density approximation.  When the maxent density is identical to the unknown underlying 

distribution, our estimator is fully efficient. When it encompasses the underlying distribution, the 

estimator is nearly efficient as the efficiency loss of maxent density estimation due to a small 

number of redundant parameters is negligible (Wu and Stengos, 2004).  If the maxent density is a 
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close approximation to the unknown distribution, then one can expect the efficiency of the GMM 

estimator to be close to that of the MLE.3  Fortunately, our experiments show that the proposed 

specification of maxent density is flexible enough to approximate closely various distributions 

that are skewed, fat-tailed, or multi-modal.   

Background and Generalization to Interval Data 

 We use a maxent approach to approximate unknown distributions.  The principle of 

maximum entropy is a general method to assign values to probability distributions using limited 

information.  This principle, introduced by Jaynes in 1957, states that one should choose the 

probability distribution, consistent with the given constraints, that maximizes Shannon’s entropy.  

According to Jaynes (1957), the maximum entropy distribution is “uniquely determined as the 

one which is maximally noncommittal with regard to missing information, and that it agrees with 

what is known, but expresses maximum uncertainty with respect to all other matters.” 

Maximizing entropy subject to various side conditions is well known in the literature as a 

method of deriving the forms of minimal information prior distribution (see for example, Jaynes 

1968 and Zellner 1977).  The maxent density f(x) is obtained by maximizing Shannon’s 

information entropy 

  ( ) ( )log
I

W f x f x= −∫ dx

                                                

subject to K known moment conditions for the entire range of the distribution 

 

3 Using the Kullback-Leibler distance to quantify the closeness or discrepancy between the 
maxent density and the unknown distribution, one can show that the GMM estimator converges 
to the MLE asymptotically as the Kullback-Leibler distance approaches zero (see for example 
Golan, Judge, and Miller, 1996, for a discussion of the duality between these two approaches for 
likelihood function defined over the exponential family distribution). 
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( )

( ) ( )

1,

,
I

i iI

f x dx

g x f x dx ν

=

=

∫
∫

 

where i = 1, 2,…, M indexes the characterizing moments, iν , and their functional forms, gi(x). 

Here gi(x) is continuous and at least twice differentiable.    

We can solve this optimization problem using Lagrange’s method, which leads to a 

unique global maximum entropy.  The solution takes the form 

 ( ) ( )0
1

; exp
M

i i
i

,f x gθ θ
=

⎛ ⎞= − −⎜ ⎟
⎝ ⎠

∑θ x

θ

 

where θi is the Lagrange multiplier for the ith moment constraint and 

 is the normalization term that ensures the density integrates to 

one. 

( )( )0 1
log[ exp ]M

i ii
g xθ

=
= −∑∫

 Zellner and Highfield (1988) and Wu (2003) discuss the estimation of maxent density 

subject to moment constraints for the entire distribution.  Generally the maxent density 

estimation method has no analytical solution.  To solve for the Lagrange multipliers, we use 

Newton’s method to iteratively update 

 ( ) ( )1 0 1 ,−= +θ θ G m  

where G is the (M+1) by (M+1) Hessian matrix of the form 

  ( ) ( ) ( ); , 0 ,ij i jI
G g x g x f x dx i j M= ≤∫ θ ,≤

and 

 0 , 0 .i i im G i Mν= − ≤ ≤  
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This maximum entropy method is equivalent to a maximum likelihood approach where the 

likelihood function is defined over the exponential distribution and therefore consistent and 

efficient.   

 In this study, we extend the classical maxent density method to deal with interval data.  

Given the moment conditions on interval share and conditional mean as in Equation (1), the 

GMM1 estimator for a maxent density f(x; θ) can be solved by iteratively updating  

( ) ( ) ( ) 11 0 ' '−= +θ θ G G G m,  

where  

 

( )( )
( )( )

0

0

;

;
k

k

kI
k

kI

f x dx s
m

xf x dx μ

⎡ ⎤−
⎢ ⎥= ⎢ ⎥−⎢ ⎥⎣ ⎦

∫
∫

θ

θ
 

 and the 2K by M matrix G consists of the K stacked submatrices ( ) ( ) ( ) ( )
1 2, ,...,k k k

M
k⎡ ⎤= ⎣ ⎦G G G G , 

where  

 ( )
( ) ( )( )
( ) ( )( )

0

0

;
, 1, 2,..., .

;
k

k

iIk
i

iI

g x f x dx
i M

xg x f x dx

⎡ ⎤
⎢ ⎥= =⎢ ⎥
⎢ ⎥⎣ ⎦

∫
∫

θ
G

θ
 

 To improve efficiency, we can use the GMMs, whose weighting matrix  is simulated 

from the consistent one-step GMM

*Ω

1.  The parameters are then obtained using the updating 

formula 

 ( ) ( ) ( ) 11 0 * *' '
−

= +θ θ G Ω G G Ω m . 

Flexible Specification of Maximum Entropy Density 

Barron and Sheu (1991) characterized the maxent density alternatively as an 

approximation of the log density by some basis functions, such as polynomials, trigonometric 
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series, or splines.  They showed that the estimator does not depend on the choice of basis 

function.  One can measure how close an estimated distribution ( )f̂ x  is to the true distribution 

( )f x  using the Kullback-Leibler distance measure, 

 ( ) ( )
( )

log ˆI

f x
D f x dx

f x
= ∫ . 

Under some regularity conditions, the maxent density estimate converges to the underlying 

density, in terms of the Kullback-Leibler distance, as the number of moment conditions increases 

with sample size.4

Theoretically, one can approximate an unknown distribution arbitrarily well using the 

maxent density.  In practice, often only a small number of moment conditions are used because 

the Hessian matrix quickly approaches singularity as the number of moment conditions increases.  

Nonetheless, one can closely approximate distributions of various shapes using the maxent 

densities subject to a few moment conditions.  In the following simulations, we use a simple, yet 

flexible maxent density: 

 ( ) ( ) ( )( )2
0 1 2 3 4; exp arctan log 1 2f x x x xθ θ θ θ θ= − − − − − +θ x , (5) 

where arctan(x) is the inverse tangent function.5  Density function (5) nests the normal as a 

special case when 3 4 0θ θ= = .  We use arctan(x) and log(1+x2) to capture deviations from the 

                                                 

4 Tagliani (2003) showed that ( )
1/ 21/ 23 1 1 4 / 9V D⎡ ⎤≤ − + +⎣ ⎦ , where is the 

commonly-used variation measure.  Hence, convergence in the Kullback-Leibler distances 
implies convergence in the variation measure. 

( ) ( )ˆ| |V f x f x d= −∫ x

   
5 The arctan(x) is also used by Bera and Park (2004) in the maximum entropy estimation of the 
ARCH model. 
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normal distribution.  Both terms are of lower order than x2 and are therefore not as sensitive to 

outliers.6  

The arctan(x) is an odd function and is able to capture skewness and other deviations 

from the bell shape of symmetric distribution, such as that of normal or t distribution.  Because 

its range is restricted between / 2π−  and / 2π , it limits the influence of potential outliers.  

Therefore, the arctan(x) is more resistant to outliers compared to the unbounded x3 for measuring 

skewness. 

The term ( 2log 1 )x+  is introduced to accommodate fat tails.  Note that the fat-tailed 

student t distribution may be described as a maxent density with a characterizing moment 

( 2log 1 / )x v+ , where v is the degrees of freedom. Usually the degrees of freedom parameter v is 

unknown and direct estimation of v places this unknown parameter on both sides of the moment 

constraint,  

 ( ) ( )( ) ( )2 2
0 1 1

1log 1 / exp log 1 / log 1 /n
ttI

2x v x v dx
n

θ θ
=

+ − − + = +∑∫ x v , 

in the maxent optimization problem, which results in a difficult saddle point problem.  Instead, 

we choose to use a linear combination of 2x and log (1+x²) to approximate log (1+x²/ν).  When 

there is one degree of freedom, or the distribution is Cauchy, log(1+x²) characterizes the density; 

on the other extreme, when the degrees of freedom goes to infinity, the t distribution 

approximates the normal distribution and x and x2 characterize the density. 

                                                 

6 By using higher order polynomials in the exponent, we can obtain alternative maxent densities.  
However, higher sample moments are more sensitive to outliers and consequently, so are the 
density estimators using these higher moments.  Also, the sample moment ratios, such as 
skewness and kurtosis, are restricted by the sample size (Dalén, 1987). 
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To examine how well x² and log (1+x²) approximate log (1+x²/ν), we use the ordinary 

least squares to regress log (1+x²/ν) on x², log (1+x²) and a constant term.  Because all functions 

involved are even, we only look at x on the positive real line.  In the experiment, we set x as the 

vector of all the integers within [1, 10,000].  For an arbitrary integer v within [1, 100], the R² is 

always larger than 0.999, indicating that log (1+x²/ν) can be well approximated by x² and 

log (1+x²). 

Monte Carlo Simulations 

 We use Monte Carlo simulations to investigate the numerical properties of the proposed 

estimators.  In each of our experiments, we set the sample size at 250 or 500 and repeat the 

experiment 1,000 times.  The randomly generated sample is divided into six intervals, separating 

at the 10th, 25th, 50th, 75th and 90th percentile of the underlying population.7  The subsequent 

share of each interval ranges from 10% to 25%.  If all the intervals have equal shares, the optimal 

weighting matrix, Equation (2), will be proportional to the identity matrix, rendering all three 

estimators asymptotically equivalent.  Therefore, to investigate the efficiency gain of the two-

step GMM2 and GMMs over the GMM1, we generate intervals with different shares.  For the 

GMMs, we draw 300 random samples from the first-step GMM1 estimate to calculate the 

simulated weighting matrix. 

In the first experiment, we generate the sample from the standard normal distribution and 

assume the functional form is known.  When only a frequency table is used in the estimation, we 

can directly compare the two-known, asymptotically efficient estimators, MLE and GMM2, to 

                                                 

7 Very often, the underlying sample size of grouped summary statistics, such as those for 
household income survey, is well above 500.  The number of groups is also usually larger than 
six. 
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GMMs.  For each experiment, we also test the hypothesis that the random sample of individual 

data is generated according to the estimated density using the two-sided Kolmogorov-Smirnov 

(KS) test.  The top panel of Table 1 reports the mean and standard errors of the integrated mean 

squared errors (MSE) between the estimated density and the underlying true density, and the 

percentage of the Kolmogorov-Smirnov test that is rejected at the 5% significance level. 8

As expected, the GMM2, which uses the optimal asymptotic weighting matrix, is more 

efficient than the GMM1.  For a sample size of 250, the mean of the MSE is 1.293 for the GMM2 

and 1.402 for the GMM1.  The GMMs, which replaces the asymptotic weighting matrix with a 

simulated weighting matrix, performs as well (its average MSE is 1.216) as the GMM2, which 

has a directly calculated weighting matrix.  Further, both the two-step GMM estimators are 

essentially as efficient as the MLE (its average MSE is 1.212, and GMMs has a lower standard 

error of the MSE than the MLE has).  In the four experiments, the null hypothesis that the 

random sample in question is generated according to the estimated maxent density is rejected at 

the 5% significance level at most once out of a thousand experiments.  The simulation results 

with a sample size of 500 follow a similar general pattern, except that the MSE is considerably 

smaller (on average, the MSE is reduced by 48%).   

 When we also use the conditional mean of each interval in the estimation, only the 

GMM1 and the GMMs are feasible.  The results are reported in the bottom panel of Table 1.  As 

we would expect, incorporating extra information improves the efficiency of the estimates.  For a 

sample size of 250, the average MSE drops from 1.216 to 1.007 for the GMMs (the 

corresponding drop is 1.402 to 1.164 for the GMM1).  Consistent with the case when we only use 

frequency information, the two-step GMMs is more efficient than the GMM1 (the average MSE 

                                                 

8 All the MSE numbers reported in Table (1)-(4) have been multiplied by 1,000. 
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is 1.007 for the GMM1 and 1.164 for the GMMs).  The KS goodness-of-fit test is rejected no 

more than four times.  

 In the next three experiments, we relax the assumption that we know the functional form 

and use the maxent density to approximate the unknown underlying distributions.  We consider 

three distributions: (i) the skewed-normal distribution with shape parameter one, which is mildly 

skewed;9 (ii) the skewed-normal distribution with shape parameter three, which is very skewed; 

and (iii) a half-half mixture of two normals, N(-3,1) and N(3,1), which is bi-modal. 

The simulation results are reported in Table 2, 3 and 4.  The general pattern is very close 

to the first experiment where we know the true underlying distribution.  The two-step GMM 

improves on the one-step GMM.  On average, the efficiency gain of the GMMs relative to the 

GMM1 is 7% when we only use frequency information and 40% when we also use conditional 

means with a sample size of 250.  The corresponding improvement is 5% and 47% respectively 

for a sample size of 500.  The two-step GMM is as efficient as the MLE where it is feasible.  

Also, the goodness-of-fit test does not reject the null hypothesis in most cases, especially when 

the more efficient two-step estimators are used. 

 We note that incorporating additional information in an inefficient way does not 

necessarily improve the estimates.  The performance of the GMM1 that use both the frequency 

table and conditional means is sometimes slightly worse than that of the GMM1 based on only 

the frequency table.  In contrast, when we use the two-step GMM with simulated weighting 

matrix, GMMs, incorporating extra information into the estimation process always improves the 

estimates in our experiments.  For example in the experiment with bi-modal normal mixture 
                                                 

9 The skew-normal distribution is defined by the density function ( ) ( )2 x xφ αΦ , where ( )xφ  

and ( )xΦ  is the density and distribution function of the standard normal respectively and α is 
the shape parameter determining the degree of skewness. 
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distribution with a sample size of 250, the average MSE of GMM1 is 2.175 when we use only the 

frequency table, but increases to 2.425 when we also incorporate conditional means.  In contrast, 

for GMMs, the average MSE decreases from 2.044 to 1.055 by 48%, reflecting the benefit of 

additional information. 

 Our experiments across sample sizes and underlying distributions show that (i) the two-

step GMM estimators are as efficient as the MLE when it is feasible; (ii) the GMMs estimator 

with a simulated weighting matrix is as efficient as its counterpart with a asymptotically optimal 

weighting matrix (both the average MSE and standard error of the MSE are smaller in all but one 

experiment); (iii) incorporating extra information in an efficient way improves the estimator; (iv) 

in more than 99% of experiments, the goodness-of-fit test does not reject the hypothesis that the 

sample in question is generated according to the estimated maxent density, indicating that the 

proposed maxent density specification is flexible enough to approximate density function of the 

various shapes considered in this study. 

Empirical Application 

 In this section, we use the proposed method to estimate the U.S. income distribution 

using data from the 2000 U.S. Current Population Survey (CPS) March Supplement.  We draw a 

random sample of 5,000 observations from the CPS and divide the sample into 6 intervals, 

separating at the 10th, 25th, 50th, 75th and 90th sample percentile.  We then estimate the underlying 

distribution using: (i) only the frequency table; (ii) the frequency table and the conditional means 

of each interval.  We only report the estimates from the GMM1 and GMMs, which are feasible 

for both cases. 

Based on the Kolmogorov-Smirnov test statistics between the sample and estimated 

densities (first column of Table 5), we cannot reject at the 1% significance level the hypothesis 
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that the sample is distributed according to the estimated distribution for all four estimates.  

Moreover, two commonly used inequality measures, the Gini index (second column) and 

interquantile-range (third column), from the sample and the estimated densities, are extremely 

close.  For example, the “true” Gini from the individual data is 0.4130 and the Gini measures 

based on the GMMs are 0.4128 (frequency only) and 0.4136 (frequency and conditional mean).  

The corresponding interquartile-range statistics are 0.5110, 0.5007, and 0.5110. 

 We can also compare the estimated densities directly using graphs.  Figure 1 plots the 

estimated densities from the GMMs with and without the conditional mean information against 

the histogram of the full sample.  Clearly, both estimates successfully capture the shape of the 

empirical distribution. 

Conclusions 

 We develop a GMM estimator to estimate the distribution of a variable when the only 

data available are summary statistics by intervals.  Because no data at the individual level are 

available to calculate the weighting matrix for the GMM estimator, we propose a simulated 

weighting matrix based on consistent first-step estimates.  When the functional form of the 

underlying distribution is unknown, we use a simple yet flexible maximum entropy density to 

approximate it. 

 We use Monte Carlo simulation experiments to illustrate that our estimated densities 

based on interval data may approximate the underlying distribution with high precision.  In our 

experiments, the two-step GMM estimator with simulated weighting matrix is as efficient as 

MLE (where it is feasible) and substantially more efficient than the one-step GMM estimator.  

Moreover, our proposed maximum entropy density is able to approximate various distributions 

that are skewed, fat-tailed, or multi-modal. 
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We employ the proposed method to estimate the 1999 U.S. income distribution from 

interval data and compare the results with the underlying raw income data from the Current 

Population Survey.  Our estimates successfully capture the features of the empirical distribution. 
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Table 1. Summary statistics of results for normal distribution 

  MLE GMM1 GMM2 GMMs
Frequency only 
Average MSE N=250 1.212 1.402 1.293 1.216 
 N=500 0.623 0.712 0.662 0.639 
S.E. of MSE N=250 1.237 1.463 1.260 1.174 
 N=500 0.628 0.713 0.658 0.663 
KS test N=250 0 0 0 0.001 
 N=500 0 0 0 0 
Frequency and Mean     
Average MSE N=250  1.164  1.007 
 N=500  0.573  0.504 
S.E. of MSE N=250  1.168  1.009 
 N=500  0.566  0.499 
KS test N=250  0.003  0.002 
 N=500  0.004  0 
 

Table 2. Summary statistics of results for skewed normal distribution ( 1α = ) 

  MLE GMM1 GMM2 GMMs
Frequency only 
Average MSE N=250 6.810 7.783 7.149 6.922 
 N=500 3.201 3.547 3.256 3.201 
S.E. of MSE N=250 6.665 9.129 7.817 7.488 
 N=500 3.060 3.403 2.934 2.854 
KS test N=250 0.045 0.059 0.047 0.043 
 N=500 0.016 0.023 0.027 0.022 
Frequency and Mean     
Average MSE N=250  3.510  2.777 
 N=500  2.585  1.522 
S.E. of MSE N=250  3.105  2.509 
 N=500  2.344  1.290 
KS test N=250  0  0 
 N=500  0  0 
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Table 3. Summary statistics of results for skewed normal distribution (α = 3) 

  MLE GMM1 GMM2 GMMs
Frequency only 
Average MSE N=250 6.671 6.657 6.433 6.310 
 N=500 3.360 3.623 3.545 3.516 
S.E. of MSE N=250 6.072 6.554 6.006 5.860 
 N=500 3.166 3.239 3.178 3.148 
KS test N=250 0 0.002 0.002 0.002 
 N=500 0.001 0.002 0.003 0.002 
Frequency and Mean     
Average MSE N=250  6.078  3.542 
 N=500  3.179  1.768 
S.E. of MSE N=250  5.288  3.239 
 N=500  2.779  1.541 
KS test N=250  0  0 
 N=500  0  0 
 

 

Table 4. Summary statistics of results for mixed normal distribution 

  MLE GMM1 GMM2 GMMs
Frequency only 
Average MSE N=250 2.082 2.175 2.099 2.044 
 N=500 1.106 1.177 1.143 1.131 
S.E. of MSE N=250 1.904 1.916 1.796 1.753 
 N=500 1.011 1.085 1.048 1.040 
KS test N=250 0 0 0 0 
 N=500 0 0.001 0.002 0.002 
Frequency and Mean     
Average MSE N=250  2.425  1.055 
 N=500  1.342  0.593 
S.E. of MSE N=250  2.299  0.799 
 N=500  1.161  0.401 
KS test N=250  0.002  0 
 N=500  0.004  0 
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Table 5. Estimation results for U.S. Income Distribution 

 KS Gini I-Q Range 
Sample  0.4130 0.5110 
Frequency only    
GMM1 0.0104 0.4106 0.5000 
GMMs 0.0092 0.4128 0.5007 
Frequency and Means   
GMM1 0.0104 0.4148 0.5011 
GMMs 0.0089 0.4136 0.5110 
KS: Kolmogorov-Smirnov statistics 
I-Q Range: inter-quartile range (in $100,000). 
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Figure 1.  Estimated densities (solid: GMMs based on frequency table; dotted: GMMs 
based on frequency table and conditional means) and a histogram based on individual data. 
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