

IRLE WORKING PAPER #82-01 September 2001

Price Dispersion on the Internet: Good Firms and Bad Firms

Kathy Baylis and Jeffrey M. Perloff

Cite as: Kathy Baylis and Jeffrey M. Perloff. (2001). "Price Dispersion on the Internet: Good Firms and Bad Firms." IRLE Working Paper No. 82-01. http://irle.berkeley.edu/workingpapers/82-01.pdf

Title:

Price Dispersion on the Internet: Good Firms and Bad Firms

Author:

<u>Baylis, Kathy</u>, University of California, Berkeley <u>Perloff, Jeffrey M.</u>, University of California, Berkeley

Publication Date:

09-01-2001

Series:

Working Paper Series

Publication Info:

Working Paper Series, Institute for Research on Labor and Employment, UC Berkeley

Permalink:

http://escholarship.org/uc/item/2t0770rn

Abstract:

Internet firms charge a wide range of prices for such homogeneous products, and high-priced firms remain high-priced and low-priced firms remain low-priced over long periods. One explanation is that high-price firms are charging a premium for superior service. An alternative explanation is that firms price discriminate across informed and uniformed consumers (Salop and Stiglitz 1977) or between serious shoppers and others (Wilde and Schwartz 1979). The pricing pattern for a digital camera and a flatbed scanner is consistent with the price-discrimination model and inconsistent with the service-premium story.

Copyright Information:

All rights reserved unless otherwise indicated. Contact the author or original publisher for any necessary permissions. eScholarship is not the copyright owner for deposited works. Learn more at http://www.escholarship.org/help_copyright.html#reuse

PriceDispersionontheInternet: GoodFirmsandBadFirms

 $Kathy Baylis \\ *$

JeffreyM.Perloff**

September2001

•GraduateStudent,DepartmentofAgricultural&ResourceEconomics,Universityof

California, Berkeley; Staff, Council of Economic Advisors
**Professor Department of Agricultural & Resource Economic Advisors

**Professor,DepartmentofAgricultural&ResourceEconomics,Universityof California,

Berkeley, member of the Giannini Foundation

Contact:

JeffreyM.Perloff510/642 -9574510/643 -8911(fax)

DepartmentofAgricultural&ResourceEconomics

207GianniniHa 11

UniversityofCalifornia

Berkeley, CA94720 -3310

perloff@are.berkeley.edu

Abstract

Internetfirmschargeawiderangeofpricesforsuchhomogeneousproducts, and highpriced

firmsremainhigh -pricedandlow -pricedfirmsremainlow -pricedoverlongperio ds.One explanationisthathigh -pricefirmsarechargingapremiumforsuperiorservice.An alternative

explanationisthatfirmspricediscriminateacrossinformedanduniformedconsumers (Salopand

Stiglitz1977)orbetweenseriousshoppersandothers(WildeandSchwartz1979).The pricing

patternforadigitalcameraandaflatbedscannerisconsistentwiththeprice discrimination

modelandinconsistentwiththeservice -premiumstory.

PriceDispersionontheInternet:GoodFirmsandBadFirms

According to conventional wisdom, e -commerce markets provide efficiency unparalleled intraditional markets (Bakos 1991). Many authors have argued that they these markets will

S

eventually become competitive or will be typified by price differentials due to variation in

service.Ourresultsrejecttheseviews.

Atypical discussion of Internet retailing start with the observation thate -commerce has all of the characteristics associated with perfect competition. Consumers can compare many

firms' prices with a click of amouse, there are low barriers to entry, and firms can change prices

atlowcost(Bailey1998;BrynolfssonandSmith1999).

Ifindeedelectronicmarketswerehighlycompetitivewewouldexpectatleastoneof threehypotheses tobetrue. First, wewould expect to see the emergence of a perfectly

competitivemarketwherethe *lawofonepriceprevails* .Second,evenifthemarketwere not

that competitive, we would expect firms to adjust their prices regularly to under cut competitors,

sothat firms' price -rankingsvaryovertime . Third, we would expect at rade off between price

andservices orfees , wherefirms that provides ervices, of ferguarantees, or assesslow shipping

andotherfeeswouldchargehigherpricestocovertheire xtracosts.Usingthisreasoning, Varian

(1999)predictedthattwogroupsofe -commerceretailerswillemerge:thoseproviding little

serviceandlowprices and those offering more service at higher prices. However, we find that

noneofthesepredictionsh oldsintheOlympusC -2000ZdigitalcameraandHewlett -Packard

6300flatbedscannere -commerceretailmarkets.

2

Manyoftheearlypapersonelectronicmarketsaddressedthesingle -pricehypothesisby reportingasubstantialrangeofpricesacrossInternet firms.Clemons,Hann,andHitt (1998)

found that prices for air line tickets differed by an average of 20 per cent between online travel

agentsevenaftercontrollingforproductdifferentiation.Bailey(1998)notedthatprice dispersionin1996and1997wa satleastasgreatamongtheInternetfirmsasamongthe conventionaloutletsforbooks,CDs,andsoftware.BrynjolfssonandSmith(1999) reportedthat

the price differential for books sold on the Internet was greater than that in the conventional retail

market. The dispersion of the posted prices (highest price minus lowest price divided by the

averageprice)ofbookandCDpricesontheInternetwere33percentand25percent respectively.Wefindpricedispersioninboththedigitalcameraandscannerr etail markets.

Sofarasweknow,nopreviousstudyhasexaminedthesecondhypothesisconcerning pricechangesofe -retailersovertime. Wefindthatfirmsdonottaketurnsundercutting each

other. The price ranking of firms does not change much from week to week: High firms - price

usuallyremainhigh -pricefirmsovertime.

Fewstudieshaveexaminedthethirdhypothesis. WeshowthattheseInternetretail marketsfordigitalcamerasandscanner sconsisto&oodfirmsthatchargelowpricesand providesuperiorserviceand badfirmsthatchargehighpricesandprovidepoorservice: the

oppositeofVarian's prediction. This pricing pattern is consistent with markets in which firms

discriminatebet weencustomerswithhighandlowsearchcosts(SalopandStiglitz1977). SomeconsumersaresophisticatedusersoftheInternet.Theyuse shopbots—websites thatcomparepricesacrossfirms(andoftenhaveinformationaboutshippingfeesand whether

the goodisinstock) —tolowertheirsearchcosts.Theseconsumersknowexactlywhich product

theywantandquicklyandefficientlysearchforthelowestprice.Incontrast,other customers

3

whoarenotsurewhichgoodtobuy,don'tknowhowtosearcheffic ientlyforprice,and puta

veryhighvalueontheirtimemaybuyfromoneofthefirstsitestheyfind.Consequently asin

the Salopand Stiglitz (1977) model, some retailers set low prices and aim for the "informed"

customers, while other stryto induce "uninformed" consumers to buy from the mat relatively

highprices.

Westartbydiscussingtheseandothertheoriesofpricevariationsingreaterdetail. Then, wedescribeourdata. In the following section, we show that prices vary substantially and document that the price -ranking soffirms are relatively constant over time. Next, we demonstrate that there are good firms (low price, good service or low fees) and bad firms (high

price,poorserviceorhighfees).Finally,weexaminehowfirmqualityranking sfromat least

 $one well\ -known Internet rating service vary with objective characteristics and discuss\ why some$

consumers may be relatively uninformed despite such services.

TheoriesofPriceDispersion

Severalwell -knowntheoriesexplainwhypricesfora homogeneousgoodmayvary acrossretailers. These theories can be loosely grouped into four categories. First, price dispersion may be random noise in an immature market that is slowly adjusting to the competitive equilibrium. Second, price variations acrossoligo polistic firms may be due to

mixedstrategiesinpricingorotherstrategicbehavior. Third, pricedispersion may reflect service premiums. Fourth, pricemay varyas firms' pricediscriminate based on consumers'

time-preferencesorsearchcosts.

ImmatureMarkets

BrynjolfssonandSmith(1999)andothershavearguedthatpricedispersionmayreflect therandomnoiseofanimmaturemarketandthatpriceswillconvergeovertime. However, for

4

the two products we study, the shape of the price distribution by week and the range or standard

deviation of prices remained relatively constant throughout our sample period. Indeed,

thisprice

dispersionhascontinuedforwelloverayear. Thus, we view this theory as repudiated. Oligopolistic Strategies

Several papers, such as Shilony (1977) and Varian (1980), have presented static models in which oligopolistic sellers use mixed strategies in prices. For example, Varian demonstrated

thatahomogeneous -goodol igopolymaysetlow("sales")pricessometimestoattract customers

whohavelowshoppingcosts. If the game is replicated independently overtime, then the mixed

strategiesproducepricevariationovertime. Firmscutprices solely to compete with rival srather

thantopricediscriminate.Firmsareunlikelytohavesalesatthesametimes,andstores vary

theirpricing behavior overtime.

Wefindnoevidenceofsuchsalesduringoursampleperiod. Wedonotobservefirms collectivelyraisingorloweringp ricesrandomlyovertimeorindividual firmstaking turns

undercuttingeachother.

 $A rnold (2000) demonstrated that price dispersion might occur even when all consumers have the same cost and prices are common knowledge if firms have inventory capacity constraints so that they run out of stock during periods of high demand. <math display="block"> \verb| 1 Although|$ consumers

 $know the distribution of prices, they must incur a search cost to determine whether the good is in {\tt constant}. The constant is the constant of the constan$

stock.Firmsusepurestrategiesinpricesandbuyersadoptsymmetri cmixedsearch strategies.It

¹ Withsearchcostsbutnocapacityconstraints, Diamond (1971) illustrated that monopoly pricing may occur when all customers must incure ven as mall amount of search cost. Davis and

Holt(1996)uselab oratoryexperiments to show that search costs raise prices though not usually

to the monopoly level (are sult consistent with the theories of Perloff and Salop 1986 and Stahl

1989,1996).

5

isnotnecessarilyoptimalforafirmtopostalowpricetoattra ctadditionalbuyers becausebuyer

 $concerns about a possible stock \\ -out dampens buyer response to the low price. \\ 2 During our sample period, digital camera retailers were out of stock 8 percent of the time, though only one \\ \\$

scannerretailereverranoutofst ock.Moreover,determiningwhethersomeofthesefirms have

the product in stock is time consuming. However, we do not find an obvious pattern between

stock-outsandprice.

AnothercommonexplanationforpricedispersionontheInternetis productheterogeneity throughbundling. Evenifagood's physical product does not vary across stores, firms may

provided if ferent levels of service and bundle the product with other goods (Grilliches 1961.

Chow 1967). Firms that provides ervices or have o the rattributes that build customer loyalty

maychargepremiumprices. Again, Varian (1999) predicts that two groups of ecommerce

retailerswillemerge:thosewithlow -serviceandlowpricesandthoseofferinghigh serviceat

high-cost.However,weshowt hataquitedifferentpatternhasemerged:goodfirmswith low

prices and superiors ervice and bad firms with high prices and poor service.

PriceDiscrimination

Pricedispersionmayreflectoneofseveralformsofpricediscrimination.Insome models,firm stakeadvantageofdifferencesinconsumers'discountrates.Inother models,firms

 $discriminate between ignorant and informed consumers, where uninformed consumers \\ may have$

highersearchcoststhanothers.

2 Arnoldmakesthepotentialtestableprediction that firms that have lower than average prices

aremoreprofitablethanthosewithaboveaverageprices.

6

Nancy Stokey (1979, 1981) showed that, with a single consumer cohort with heterogeneous

tastes, it is optimal for a monopolytomarketane w durable product by reducing the price over timeso as to price discriminate temporally. The price of the digital camera does fall

overtime, which is consistent with her view of intertemporal price discrimination. However,

this fall in price may be due to increase d competition from other cameras. Moreover, we do not

observeadownwardtrendintheothergoodwefollow, scanners.

Similarly, Conlisk, Gerstner, and Sobel (1984) and Sobel (1984) illustrated that price reductions for durable goods can be a means of price discriminating against consumers who are

impatient and have relatively in elastic demands. A monopoly (or oligopoly) uses periodic sales

tosweepconsumerswithrelativelylowreservationprices fromthemarket. Therestof thetime.

themonopolychargesahigherpricetoconsumerswithhigherreservationprices. 3 All stores

maylowertheirpriceatthesametimeandtothesamelevel. However, we observe price

variationacrossfirms within aper iodand not intertemporally.

Steve Salop (1977) showed that, if consumers have different costs to obtaining or processing information, some firms may sell at relatively high prices to only in efficient searchers

whileotherfirmswouldchargelowerpricesp rimarilytoefficientsearchers.Salop concluded

that amonopoly facing consumers with varying search costs has an incentive to create spurious

pricedispersion("noise")tosegregatethemarket.

³ SalopandStiglitz(1982)provideanalternativeexplanat ionforsalestosweepcertain customersfromthemarket.Storespricediscriminatebyholding(unannounced)salesto induce

some (of the apparently homogeneous) consumers to purchase for future consumption.

4 Similarly, Dana (1999) shows that when capacit y is costly and prices are set in advance, firms

facing uncertain demand will sell output at multiple prices and limit the quantity available at

eachprice.Zettlemeyer(1998)showedthat,iffirmscansetthesearchcostsfacing

Salop's static model may partially explain temporal Internet price dispersion. In our sample, several firms owned pairs of retail websites. Some of these pairs of websites posted the

sameprice, but other pairs posted different prices or shipping fees. For example, e and PC

Mallarebothregisteredto "Creative Computers" of Torrence, California. In August of 2000,

e-Costsetapriceof\$334.99(\$364.49includingshippingandhandling)foraHewlett Packard

6300scanner, while PCM allcharged \$399.99 (\$418.22 including shipping and handling).

Thoughhismodelisstatic, Salop (1977) noted that varying the location of the low prices over time might be a feasible dynamic strategy. However, our data are consistent with the static

and not the dynamic story: Prices vary across firms and not over time.

SalopandStiglitz(1977)showedhowfirmscoulddiscriminatebetweeninformedand uninformedconsumers. Theirstoryiscommonlyreferredtoasthe "touristsandthe natives"

model (Carlton and Perloff 2000). In the simple stversion of their model, some uninformed

customers(tourists)haveapositivecostofsearchingforthelowest -pricefirm, while informed

consumers(natives)havenocostofsearch. 5 Theuninformed buyersobserveoneprice before

theybuy, while the informed buyers observe all prices. If enough consumers must incur search

costs, it pays for some firms to charge a relatively high price and sell to only their portion

of

uninformedcustomerswhochoose betweenretailersrandomly.Otherfirmschargea lowerprice

(possiblymarginalcost)andselltobothinformedanduninformedconsumers. Entry equalizes

theprofitbetweenthetwotypesofretailers.

homogeneous consumers, firms may keep search costshigh even if search costs could be lowered at no expense.

⁵ Similarly,BurdettandJudd(1983)andStahl(1989)assumethatsearchcostsare distributed

acrossbuyers, each of whomse archesfor low prices optimally.

8

Someothertheoriesproducesimilarimplic ations. For example, Wildeand Schwartz (1979) looked at discrimination that reflects differential consumer preferences for shopping.

One could characterize a "shopper" as some one with an egative cost of search.

ConclusionsaboutTheories

Casual observation of our data cause sustore ject most of these theories out of hand. We concentrate on two opposing theories. These rvice premium theory suggests that high service

firmschargerelativelyhighprices, whereas the Salop - Stiglitz price discrimination theory is

consistent with high -service firms that charge relatively low prices.

Data

ThroughextensivesurfingontheInternet,wecollectedpriceandotherinformationfor theOlympusC -2000ZdigitalcameraandfortheHewlett -Packard(HP)6300flatbed scanner.

Wepickedpopularmodelsthatmanyfirmssell.WeusedtheC/Netshopbottoidentifya listof

 $firms that sold the seproducts. We followed 41 firms that sold the Olympus C2000Z\ camera and$

28firmsthatsoldtheHP6300scanner.Wetreatedsitesthatwere ownedbythesame firmand

that charge the same price as a single site, but included as separate observations commonly

ownedsitesthatchargedifferentprices.

Because the information in the shop bot was not always accurate (sometimes due to lags in updating), we collected data from each firm's website weekly. The collection period lasted

14weeks(September24 th toDecember19 th,1999)forthecameraand11weeks(October 7th to

December 19 th, 1999) for the scanner. 6 Werechecked the firms in August 2001 to see if the

6 Thereasonforthedifferentlengthsofobservationisthatweswitchedwhichflatbed scanner

wefollowedthreeweeksafterwestartedourstudy(asanoldermodelwasphasedout).

"bad"firmsweremo relikelytogooutofbusiness;theywerenot.Outof49firms studied

sellingeitherproduct,2mergedand12stopsellinghardware.Ofthe12,sevenhadlower than

averagepriceandfivehadahigherthanaverageprice.

Alongwiththebasicprice(neto fsalestax), were corded shipping fees (to the same zip code as the retailer's address) and other fees and rebates. In addition, we collected answers to

thefollowing questions: 7

Didthefirmofferaguarantee?

Didthefirmchargeafeeforrestocking theitem?Ifso,howmuch?

Didtheretailer'swebsitenotewhethertheitemwasinstock? Ifso, wasitinstock?

Didtheretailerspecializeinsellingcertaintypesofproducts(e.g.,didtheretailer carryonlyphotographicorelectronicproducts)?

WhatratingdidthefirmreceivefromBizrate,awebsitethatpostsdetailedratingsof anumberofInternetfirms? 8

Didthewebsiteprovideaphotooftheproduct?

Didthewebpageprovideanextensivedescription?

7 Theacademicliteraturerarelyifevernotesthatavoidanceofsalestaxesmaycontribute toprice

differencesacrossfirmsforbig -ticketitems. Asavvyconsumermayreason: "IfIbuya heavy

durableontheInternet,Iwantitshippedfromsomewherenear butacrossthestate's borderso

thatIcanavoidthestate'ssalestax."Thus,aNevada -basedstoremaybeabletochargea higher

price than those located in California and yet under cut Californian firms after fees and taxes are

included. However, we can not formally model this effect because we do not know the distribution of shoppers across states.

8 WeusedtheBizraterankingsbecausetheotherratingsiteswefound,suchasGomez, ranked

substantiallyfewerofthesefirmsthandidBizrate.Bizraterat edvirtuallyallthefirmsin our

samplethatwereratedbyGomezandothersaswell.

10

Howmanypagesmustoneviewwhengoingfromthefirm'shomepagetotheproduct listing?

Table1presentssummarystatisticsforourvariables.

PriceDispersionand FirmRankings

Westartbyexaminingwhethercompetitionleadstoasinglepriceorconstantjockeying offirmstohaverelativelylowprices. Werejectbothofthesehypotheses.

PriceDistributions

We found that the prices of the camera and the scanner var ied extensively, even among firms listed on the popular C/Netshop bot. Over our sample period, the total prices for the

camera(includingshippingandotherfees)rangedfrom\$673to\$1,015,withameanof\$808,as

Table1shows. 9 The\$342pricerangewas 42percentoftheaverageprice. Figure1 shows the

histogramofpricesoverthesampleperiod, which appears to be trimodal. The modes occurred

at\$90 intervals, at\$720,\$810, and\$900. Approximately one quarter of the firms sold at prices

lessthan \$750 and aquarter posted prices great than \$860. The shape of this distribution changed little over time, as the price distributions in most individual weeks were trimodal and

therangeofpricesvariedlittle(thoughthemeanfellovertime).Ourfollow -up observations

after10monthsdidnotdetectchangesinthedistribution.

Overtheperiod, the range of totals canner prices, \$106, was 29 percent of the mean price of \$371. The distribution of the scanner prices in Figure 2 is bimodal, with one peak near the

9 Sincewelimitedourobservationstofirmspostinginformationonasingleshopbot,out datado

notincludeallInternetretailers.Thus,theactualdispersioninprices isgreaterthanwhat we

report.

11

meanandasecondmodeattheupperendoftherange. Again, the shape of this distribution did

notchangemuchfromweektoweekoverthesampleperiod.

Firmsfrequentlychangedtheirprices.Cameravendorschangedthei rpostedprices roughlyeverythreeandahalfweeks,whilescannersellersadjustedtheirpostedprices about

everyfourandahalfweeks. Given that the cost of adjusting prices is very low and firms didso

frequently, we might expect vigorous price competition, especially if consumers have full information. However, we found no evidence that prices were converging to a mass point, as the

distributions remained essentially constant overtime.

Firms'Price -RankOrdering

Eventhoughthelawofone -pricefai ls, wemightexpect that the ordering of the firms by pricewould change frequently as firms tried to under cutrivals. To test this hypothesis, we

examinewhethertheprice -rankorderingoffirmsisrandomorwhetherstorestendto maintain

theirranksove rmanyweeks.

Weorderedthefirmsfromlowtohighusingtotalprice(whichincludesshippingand otherfees). Thematrices in Figures 3 and 4 show the week -to-week changes in rank for cameras

andscanners. Row i of each matrix shows a firm's rankin week i, while column i+1

reflectsthe

firm's rankinthe following week i+1. If the price or derings in a week were purely random

(and,inparticular,independentof theorderinpreviousweeks),the shift from a rank in week i to

anyotherrankinthefollowin gweekwouldbeequallylikely.Consequently,the probabilityof

beinginanycellinthematrixwouldbetheequal.However,majorchangesinrank orderingare

raresothatmostoftheweightliesalongtheprincipaldiagonalofthematrix.

We do not report formal statistical tests because the results are obvious upon inspection.

AsFigure3shows,acameraretailerwithagivenrankinweek *i* maintainedthesame rankthe

12

followingweek25percentofthetime.Afirmkeptitsrankorchang editsrankbyatmost one

position 57 percent of the time. A firm changed more than 10 ranks (out of a possible 40) only 4

percent of the time. Figure 4 shows that scanner vendors did not switch rank 37 percent of the

time, changed by at most 1 rank 75 pe rcent of the time, and moved more than 10 (out of a possible 27) ranks only 1 percent of the time.

Evenovermuchlongerperiods, firmsmaintaintheirrank. Comparing theranks of the scanners in the last week of our sample to the ranks 10 months later, 40 percent changed 1 rank

orless, and no firm changed by more than 10 ranks.

This consistent ordering of firms is inconsistent with the hypotheses that price dispersion reflects an immature market that is adjusting toward a competitive market or that firms hold

irregularpricepromotionsorsystematicallycutpricestotakesalesfromrivals. Thus, our remaining principally potheses are that high -price firms charge a premium for services or that

firmsengageinsomeformofpricediscrimination.

PricingMode 1

Thus, we conclude that both high -price and low -price firms maintain their relative pricing overlong periods. Why do some firms consistently charge higher prices than others? Can this

pricedispersionbeexplainedbyfirmspricediscriminating(forexamp account of le,bytaking

differentdegreesofconsumerinformation)orbyfirmschargingapremiumforservice? Todistinguishbetweentheprice -discriminationandtheservice -premiumhypotheses,we regresseachfirm'spriceonvariousfirmcharacteristics ,shippingandotherfees,and time

dummies. Table 2 shows the camera and scanner regressions, where we correct for first order

autocorrelation(droppingtheinitialobservationforeachfirm). Forthethreecontinuous

variables, shipping fee, restocking f ees, and other fees, we include level and squared terms

13

(higher-order terms were statistically insignificant). We use no minal prices because our sample

periodisrelativelybrief. Wedonotinclude firm - specific dummies because many firm dummies

would be perfectly collinear with dummies representing firm characteristics.

Tosavespace, the table does not report the time dummy coefficients. The rewasa pronounced drop in the camera price over the sample period. 10 However, no clear pattern emerged for the scanner. 11

If the service - premium story is correct, we would expect that the firms sethigher prices if they offer guarantees and charge low shipping and other fees. If the price - discrimination story is

true, weanticipatethat firms with these desi rable attributes to charge less, as they try to attract

informedconsumers.

Buyerslikethesecurityofareturnguarantee(theunconditionalabilitytoreturnthegood forarefund)andnorestockingfee(apercentageofthepurchasepricethatisforfeit edif the

goodisreturned). If all buyers were sophisticated and had low search costs, we would expect

firmstoraisetheirpricetocovertheirextracostsiftheyprovideaguaranteeandwaivea restockingfee. However, in the actual world of bothsophi sticated and unsophisticated shoppers

with varyingsearchcosts, this trade off does not occur. Good firms charge low prices and 10 In the camera equation, the coefficients on the week dummies from week 2 through week 14

(whereweek1istheresidualperiod)were -7.831(t -statistic= 1.49), -6.146(-0.89), -5.501

(-0.68), -12.86(-1.52), -12.07(-1.41), -20.71(-2.34), -29.51(-3.22), -34.47(-3.80), -36.69

(-4.12), -44.93(-5.11), -39.29(-4.89), -31.19(-4.64),and -29.30(-5.34). The time pattern for

cameraprices could reflect price discrimination by the manufacturer based on individuals' time

preferences (Stokey 1979). Alternatively, it could reflect increased competition from rival manufacturers or technological progress.

 ${\small 11}\ In the scanner equation, t \\ {\small \ } he coefficients on the week dummies for week 2 through \\ {\small \ } week 11 \\ \\ {\small \ }$

were 1.38(0.84), -1.07(-0.49), 0.37(0.15), -0.28(-0.10), -1.55(-0.53), 0.97(0.33), 0.71 (0.25),

7.25(2.77),9.35(4.07),and7.42(4.06).

14

provide consumers with security while bad firms charge high price and fail to provide guarantees. Firms that provide a guarantee charge \$42 less for a camera and \$25 less f

scanner(marginallystatisticallysignificant). Thus, this effect is consistent with the price discrimination

storyandnottheservice -premiumhypothesis.

Ifonlyinformedconsumerspopulatedtheworld, we would expect to see a service premium reflected in price: A firm that charged higher fees would set a lower price so that the

total price remained constant. Instead, we find a quadratic relationship between shipping fees

and total price. For both the camera and the scanner, the coefficients on the shipping fee and fee

squaredarecollectivelystatisticallydifferentfromzero(F -statistic=6.32and13.22 respectively),thoughthecoefficientsarenotindividuallystatisticallysignificantly differentthan

zerointhecameraequation.

The effect of an extra dollar of shipping fees on the total price for the scanner is increasing until the shipping feere aches \$18.07 and is positive through the observed range of

fees. A firm that charged the average shipping fee of \$12.68, sets a total price that is \$41.65

morethandoesafirmthatchargesnoshippingfee.

The price of fan extra dollar of shipping fees for the digital camera increases until the shipping feereaches \$2.67 and is positive until the feereaches \$5.33. A camera vendor who

chargestheaverageshippingfeeof\$9.65,setsatotalpricethatis\$6.25lessthanafirm that

chargesnoshippingfee.

The "otherfees" are lump - sum handling or mandatory membership fees. Many of the firms that use such feesemploy aparticularly sleazy practice: The buyer discovers that these fees

areassessedonlyafterspendingsubstantialtim efillingoutalltheformsfororderingthe product.

Consequently, we hypothesized that these fees were more likely to be charged by firms catering

15

to unso phisticated customers. Of firms that collect such a fee, the average fee was \$11.66 for

camerasa nd\$7.61forscanners.Becausemostfirmsdidnotchargetheseotherfees(only 4of

the 41 camera firms and 4 of the 28 scanner firms charged sucha fee), the average fee across all

firmswasonly\$1.14forcamerasand\$1.09scanners.

Again, we find that the price effect of these fees is quadratic. Collectively, the coefficients on the other fees were significant for both the camera and the scanner (F statistic =

12.23and11.50respectively).Scannervendorsthatchargethesefeesset ahighertotal price(for

the entire range of observed fees). At a fee of \$10.06 (where the effect is maximum), the store's

total price is \$54.65 more than a store that does not set such a fee. These fees have a positive

effectontotalpriceuntiltheoth erfeesreach\$20.12.Forthecamera,thepriceeffectof an

increase in a dollar of other fees is increasing until the fee reaches \$2.35 and is positive until the

feereaches\$4.70.These results are consistent with the price -discrimination story and not with

theservice -premiumstory.

Becausenotreportingwhethertheproductisinstockisacarelessorsleazypractice, we predicted that such firms would charge more, which is consistent with the price discrimination

modelandnotwiththeservice -premiumstory. Firmsthatdonotreportwhether the productwas

instockchargedastatisticallysignificant\$6.02moreforascannerbutnotstatistically significantlymoreforacamerathandootherfirms.

Wealsoincludedan"out -of-stockdummy"becauseweth oughtthatfirmsthatreported thegoodwasoutofstockmightchargelesstoinducecustomerstowait. However, the coefficientonthisdummyvariablewasnotstatistically different from zeroatthe 5 percentlevel

inthecameraequation. Weleftthisdu mmyoutofthescanner equation because only one firm

ranoutofstock(twice)duringourobservationperiod.

16

Somewebsitesappeartobedesignedtomakesearchingcostly.Oneexplanationisbad design:poorservice.Anotheristhatthesiteselectsfo rthosecustomerswithlow -search costsor

littletimepreference.Suchapracticemakessenseifthefirmchargesthosecustomersa low

priceandchargesahigherpriceatanothersitethatiseasiertosearch. Atypical site's home

pagehasalistofpro ducts. By choosing "cameras" and then making sequential choices, one

eventuallyarrivesattheOlympusC -2000ZDigitalCamerapage.Togettothispage requires

goingthroughbetweenoneandfivepagesdependingonthesite.Forthescanner,one views

between zero and nine pages. On sites where it takes more than three pages to get to the desired

product from the home page, firms charge \$48.25 less for the camera (this variable was not the context of the

significantforthescanner). 12 Thisdifferentialmayreflectpricediscriminationover consumers

withdifferenttimepreferences. Clemons, Hitt, and Hann (1998) founds imilar results for

travel

agents.

Theretailerstendedtoprovideeitheraphotooradetaileddescriptionoftheprodu ct,but rarelyboth.Presumablythoseconsumerswhoknowthequalitycharacteristicstheyprefer find

thewrite -upismoreuseful.Perhapsothercustomerswhoarelesscertainwhichproduct characteristicstheylikemaybemoreinfluencedbyaphoto.Ifth ewebsitehadaphotoof the

product, the firm charged a \$36.36 higher total price for cameras and \$18.36 more for the scanner. Firms that provide only minimal descriptions about a product (no more than five lines

oftext)charge\$12.75moreforascanner (theresultwasnotsignificantforthecameraat the5

percentlevel).

12 Atsomesites, you can only find the product by using a site - specific search engine and providing an exact name. However, a variable capturing this effect was not statistically significantly different from zero in either equation.

17

Firmsspecializinginelectronicscharged\$27.71lessforthecameraand\$12.62morefor thescannerthandidnon -specializedfirms.Theaccessorydummy(equalsoneifcamera accessoriesarelistedonth ecameraproductpage)andthephonenumberdummy(equalsoneif

the firm's phone number is listed on the website) were not statistically significant at the 5

percentlevel.

Severalwebsites, such as Bizrate, ratevendors. Bizraterelies primarily on consumers for ratings, but its staffrates some firms (consumers rated 20 out of our 23 rated firms). Bizrate

asks consumers to fill out its survey immediately after making a purchase and then after delivery.

Thequestionnairecovers10categories:easeofor dering,productselection,product information,

price, website, on -timedelivery, product representation, customer support, privacy policies, and

shipping and handling. At the time of our study, a consumer gave each firm between one and

fivestarsforeach category,andtheresultswerethenaveragedtogiveanoverallscore. Asa

practicalmatter, we observed ratings between 2.5 to 4.5 stars. One came rastore and one scanner

store received 2.5 stars, one had 3.5 stars, four teen camera firms and nines canner vendors had 4

stars, and fivewere awarded 4.5 stars. Because of the small number of firms with 3.5 stars or

less,wecombinedthemintoacategorywiththosethatscored4(our residualcategory). The

 $other two categories are unrated firms and those that got the top observed score of 4.5\,stars.$

Wefindnostatisticallysignificanteffectoftheratingsoncameraprices. However, scannerprices are upto \$18.50 lowerifa firm is unrated or has a high rating rather than a relatively lowering. This result is not consistent with the service -premium story but may be

withtheprice -discrimination model. 13

13 The Salop - Stiglitz model predicts that lower - price dfirms have larger market shares. Wedo

notobservesalesofdigitalcamerasorscannersdirectly. However, we know how many 18

PriceandQualityRankings

According to theory, one way to counterprice discrimination against uninformed consumers is to provide them within formation. If so, why doesn't information about relative.

prices (C/Net and othershop bots) and quality ratings (Bizrate, Gomez, and others) drive high price,

low-servicefirmsoutofthemarket?

Oneexplanationisthatmanyconsumersareunawareoftheseservicesor otherwise unwillingtousethem. Afterall, it's difficult for consumers to judge the objectivity and reliability of price and stocking information as well as quality ratings and other information

freelyprovidedontheInternet.Wefoundthatmostofthe shopbotswerenotcompletely reliable

intheirlistingsofobjectivestatisticssuchasprices, shipping fees, and whether the product was

instock.NonelistedaverylargeproportionofallrelevantretailersontheInternet. Onecouldarguethatthesho pbotsprovideconsumerswiththe"marketdistribution" of prices.SalopandStiglitz(1977) and many of the papers discussed earlier presume that consumers know the distribution but not which firm has the lowest price (cf. Stahl 1996). The reliability of less objective quality ratings is even more questionable. We used binary probit (Bizraterating is 4.5 or another positive number) and ordered probit (Bizraterating

is 4.5, 4.0, or another positive number) to determine how the Bizraterating sare related to our

relativelyobjectivefirmcharacteristics. We included only one observation perfirm because

noneofthefirms' characteristics changed over our sample period except for price and fees.

Because our camera and scanners amples izes are small, we combined the samples. To make

 $customers ranked are tailer for Bizrate. These numbers are a proxy for the retailers's ales. \\In our$

sample,relativelylow -pricefirmsdidno thavemoreBizrateresponses.Ofcourse,the number

ofresponsesalsodependsonthenumberofproductseachretailercarriesaswellasthe

salesof

19

our price and fee variables comparable across the two markets, we used the ratio of the firm's

average price during the period to the average price for the product over this period. For the few

firms that sold both products, this ratio was within 5 percent in both markets. For those firms,

weaveragedthetworatios.(Thepricevariableweusemeasuresthe priceofonlythe cameraor

thescanner, whereas Bizrate presumably considers prices across many goods in ranking a vendor.) We dropped the out -of-stock variable because no firm was out of stock for the majority

ofthetime, and we omitted then o-phone-listing variable because it was highly correlated with

theotherdummyvariables.

Noneofourvariables was statistically significantly different from zero at even the 0.10 level (indeed, all of the z values were less than 1.0). Consequently, we do not report these results

in a table. Given that our variables overlaps everal of Bizrate's categories, these results are

surprising. Perhaps Bizrate `s consumers provide largely random information, in which case the

ratingsareworthless. Alternatively, our lack of predictive power may result from Bizrate putting

substantial weight on product selection, privacy, support, and delivery (categories we do not

include),inwhichcasetheratingscontaininformationbeyondthatfromourother variables.

Asdiscussedabove, the Bizraterating is nothighly correlated with the camera price, but has a statistically significant impactons canner prices. One possible interpretation of this result

isthatconsumerswhobuycamerasforrecreationalusearerelativelyunlikelytos earch forand

useratingsofothers, unlike people who buys canners for businessuse.

Given that even the pricing information of the shop bots is not completely reliable and the ranking soffirms like Bizrate may be questionable, we conclude that Internet consumers must

 $each. Moreover, high\ -volume firms (e.g., Buy.com) may engage in heavy marketing that offsets the price effect.$

20

spendsubstantialtimeandefforttogain"fulli nformation."Itmaytake10to15minutes or

more persite to obtain all the relevant information. If Arnold's (2000) model applies, the key

issueconsumersmustcheckiswhethertheproductisinstock. Determining whether the

product

isinstockandwhet herfixedfeesareassessedisparticularlytimeconsuming,asonemay need

to complete the ordering process (filling outmany forms) before the site supplies this information. It takes consumers even longer to assess a firm if they want to check the firm at \$\$ (1) = 1000

severalratingservices.

Summary

ManyhavepredictedthattheadventofInternetretailingwouldresultinperfectly competitivemarketwithasingleequilibriumprice.However,Internetfirmschargea widerange

ofpricesforahomogeneousproduct,as wefindforaspecificdigitalcameraanda flatbed

scanner(andotherstudieshavefoundformanyothergoods).

Unlikeprevious studies, we examine how Internet prices change over time. Even if the law of one price is violated, one might expect Internet irms to compete to under cuteach other,

sothattherankingsoffirmsbypricewouldvaryovertime. This hypothesis is false in our two

markets: High -pricedfirms remainhigh -priced and low -priced firms remainlow -priced over

longperiods.Moreover,price sdonotfluctuateovertimeinamannerthatwouldsuggest thateretailers

useperiodicsales.

We consider two alternative explanations for price dispersion. The service model contends that some retailers provide better services that allow them to more. Our -premium charge

alternative hypothesis is based on the Salop and Stiglitz (1977) model of price discrimination

 $across informed and uniformed consumers. Essentially, we examine whether firms charge \\ a$

We conclude that the evidence from our two markets is generally consistent with the price-discrimination model and in consistent with the service -premium story. For example, firms

thatuseconsumer -unfriendlypractices -suchasnotallowingreturnsornotindicating whether

thegoodisinstock –tendtochargehigherprices.Wealsoprovideotherevidence consistent

withtheprice -discriminationstories.

We conclude that thee -retailing marketisch aracterized by significants ear choosts (up to 15 minutes or more persiteons ome of the less user -friendly sites), especially to determine

whetheragoodisinstockand,toalesserdegree,itsprice.Thesetransactioncostsresult in

pricedispersion possibly because firms discriminate among consumers based on their knowledge, search costs, or patience (Salopand Stiglitz 1977; Wilde and Schwartz 1979).

22

References

Arnold, Michael A., "Costly Search, Capacity Constraints, and Bertra nd Equilibrium Price

Dispersion," *InternationalEconomicReview*,41(1),February2000:117 -131.

Bakos, J. Yannis, Reducing Buyer Search Costs: Implications for Electronic Marketplaces,"

ManagementScience, 43(12), December, 1997:1676 -1692.

Bakos, J. Yannis, "AStrategic Analysis of Electronic Marketplaces." *MISQuarterly*, September,

1991:295 -310.

Bailey, Joseph P., "Intermediation and Electronic Markets: Aggregation and Pricing in Internet

Commerce,"PhDdissertation,Technology,ManagementandPolicy,Mass achusetts InstituteofTechnology,Cambridge,MA,1998.

Brynjolfsson, Erik, and Michael D. Smith, ``Frictionless Commerce? A Comparison of Internet

and Conventional Retailers, "(August) Working Paper, MITS loan School of Management,

http://ecommerce.mit.edu/papers/friction,1999.

Burdett, Kenneth, and Kenneth L. Judd, ``Equilibrium Price Distributions, ``Institute of the context of the c

Econometrica, 51(4),

July1983:955 -969.

Carlton, Dennis W., and Jeffrey M. Perloff, *Modern Industrial Organization*, 3ed, Reading, MA:

AdditionWesleyLongman,2000.

Chow, Gregory C., "Technological Change and the Demand for Computers," *American Economic Review*, December, 1967:1117 -1130.

Clemons, Eric K., II - Horn Hann, and Lorin M. Hitt. 1998. "The Nature of Competition in Electronic Markets: An Empirical Investigation of Online Travel Agent Offering."

Working Paper, Wharton School of the University of Pennsylvania, June.

23

Conlisk, John, Eitan Gerstner, and Joel Sobel, "Cyclic Pricing by a Durable Goods Monopolist,"

QuarterlyJournalofEconomics ,99(3), August 1984:489 -505.

Dana, James D., Jr., "Equilibrium Price Dispersion under Demand Uncertainty: The Roles of

CostlyCapacityandMarketStructure," *RandJournalofEconomics* ,30(4), Winter 1999:632-660.

Davis, Douglas D., and Charles A. Holt, "Consumer Search Costs and Market Performance,"

EconomicInquiry ,XXXIV(1),January1996:133 -151.

Diamond, Peter, "AModel of Price Adjustment," Journal of Economic Theory ,3(2),

June

1971:156-168.

Grilliches, Zvi. 1961. "Hedonic Price e Indexes for Automobiles: An Econometrics Analysis of

QualityChange:"Reprintedin PriceIndexesandQualityChange:StudiesinNew Methods

of Measurement. Grilliches, Ed. Cambridge MA: Harvard University Press, pp. 55 -87. Perloff, Jeffrey M., and Steven C. Salop, "Firm - Specific Information, Product Differentiation,

andIndustryEquilibrium," OxfordEconomicPapers ,38(Suppl.),November1986:184 - 202.

Salop, Steven C. ``The Noisy Monopolist: Imperfect Information, Price Dispersion and Price Dispersion and Price Dispersion and Description of the Control of the Control

Discrimination," *TheReviewofEconomicStudies* ,44(3),October1977:393 -406.

Salop, Steven C., and Joseph E. Stiglitz, "Bargains and Ripoffs: A Model of Monand Listing Plan."

Monopolistically

CompetitivePriceDispersion." *TheReviewofEconomicStudies* ,44(3),October1977: 493-510.

Salop, Steven C., and Joseph E. Stiglitz, "The Theory of Sales: A Simple Model of Price Dispersion with Identical Agents," *American Economic Review*, LXXII (5), September 1982:1121-30.

24

Shilony, Yuval, "Mixed Pricingin Oligopoly," *Journal of Economic Theory*, 14(2), April 1977:373-88.

Smith, Michael D., Joseph Bailey and Erik Brynjolfsson, ``Understanding Digital Markets:

ReviewandAssessment,"in *UnderstandingtheDigitalEconomy* ,ErikBrynjolfssonand BrianKahineds.,Cambridge,MA:MITPress,1999.

Sobel, Joel, "The Timing of Sales," *Review of Economic Studies* ,51(3), July 1984:353 -68.

Sorenson, Alan, T., "Equilibrium Price Dispersion in Retail Market for Prescription Drugs," MIT

WorkingPaper,October22,1998.

Stahl, DaleO., "Oligopolistic Pricing with Sequential Consumer Search," *American Economic*

Review, 79(4), September 1989: 700 -712.

Stahl, DaleO., "Oligopolistic Pricing with Heterogeneous Consumer Search," *International*

JournalofIndustrialOrganization ,14(2),April1996:243 -268.

Stokey, Nancy L., "Intertemporal Price Discrimination," *Quarterly Journal of Economics*,

XCIII(3), August 1979: 355 -71.

Stokey, Nancy L., "Rational Expectations and Durable Goods Pricing," *Bell Journal of Economics and Management Science*, 12(1), Spring 1981:112 -28.

Varian, HalR., "AModelofSales," *AmericanEconomicReview*, 70,1980:651 -9.

Varian, Hal, R., ``Market Structure in the Network Age, ``Paper for Understanding the Indian Control of the Network Age, ``Paper for Understanding the Indian Control of the University Age, ``Paper for Understanding the University Age, ``Paper for Understand t

```
Digital
```

EconomyConference,DepartmentofCommerce,WashingtonD.C,May25 -26,1999.

Wilde, Louis L. an d. A. Schwartz, "Equilibrium Comparison Shopping," Review of

Economics

Studies, 46(3), June 1979: 543 - 554.

Zettlemeyer, Florian, "The Strategic Use of Consumer Search Cost," Haas Business School,

UniversityofCalifornia,Berkeleyworkingpaper,October1998

25

Table 1: Means, (Standard Deviations), Minimums, and Maximums

OlympusC -2000Z

DigitalCamera

HP6300FlatbedScanner

meanMinimummaximummeanminimummaximum

Continuous Variables

Price(\$)797.77

(71.04)

663.01999.95357.29

(21.25)

309.95402.99

Totalprice(\$)808.23

(68.49)

672.961,014.90371.40

(22.73)

315.17421.43

Shippingfee(\$)9.65

(7.84)

029.0012.68

(7.95)

034.29

Restockingfee(%)8.76

(7.17)

02010.69

(6.93)

020

Otherfees(\$)1.14

(3.79)

017.521.09

(3.09)

013.60

Bizrate(0to5stars;0

meansnotrated)

1.96

(2.04)

04.52.32

(2.03)

04.5

Bizrate(>0to5stars)4.03

(0.19)

2.54.53.98

(0.24)

2.54.5

Pagesbetweenhomeand

productpage

2.71

(1.17)

152.93

(1.73)

09

BinaryVariables

Camerafirm 0.05 -

Electronicfirm0.640.71

NoBizraterating0.510.42

4.5Bizratestars0.120.18

Guarantee0.710.85

Outofstock0.080.01

Stockingnotreported 0.330.27

Photoofproduct0.590.40

Minimaldescription 0.220.42

Nophonenumberlisted0.100.11

Accessorieslisted0.26 -

>3pagestoproductpage0.220.29

Neednamesearchto

findproduct'spage

0.230.14

Numberofobservations 574306

26

Table2:LinearRegressiononTotalPrice

OlympusC -2000Z

DigitalCamera

HP6300FlatbedScanner

coefficientt -statisticcoefficientt -statistic

Returns

Guarantee -41.52 -3.73- 21.71- 1.75

Restockingfee -2.23 -0.771.280.78

Restockingfee 2 0.181.05- 0.11 -1.08

Fees

Shippingfee0.800.315.064.59

Shippingfee 2-0.15-1.63-0.14-3.94

Otherfees 3.430.5510.86 3.64

Otherfees 2-0.73- 1.91- 0.54 -2.18

Stocking

```
Outofstock -1.42 -0.25
Noinformation -4.96 -0.996.022.46
TypeofFirm
Camerastore -30.79 -1.47
Electronicsstore -27.71- 2.9612.622.13
NoBizraterating16.341.51 -18.51-3.12
4.5Bizratestars24.371.59 -16.26- 2.47
Website
Photoofproduct36.362.9418.363.42
Minimaldescription 12.110.8912.752.40
Nophonenumberlisted -9.11- 0.434.400.45
Accessorieslisted18.991.63
>3pagestoproductpage
                           -48.25- 4.228.161.14
Neednamesearchto
findproduct'spage
-14.301.363.010.48
Constant 871.1737.89338.9316.43
> 0.7927.680.9337.17
D.W.2.122.13
R2 0.810.88
Number of Observations 466233
Figure 1: Histogram of Camera Prices over 14 Weeks
Figure 2: Histogram of Scanner Prices over 11 Weeks
29
Figure 3: Price - Rankof Camera Vendorin Week
                                                       i versusWeek i+1
1234567891011121314151617181920212223242526272829303132333435363738394041
1721111
2 2 7 211
3 23341
4 21342
5 11134111
6 1111 5111
7 1132 5
8 142231
9 1222 5 11
10 111 5111
11 13 5 311
12 111123111
13 12 6 11
14 212 5 211
15 1 5 211
16 11 6 212
17 12 5 21
18 11 5 31111
19 112143
20 132331
21 23211211
22 11 6 1112
23 134111
24 11321211
25 1123311
26 1 5 321
27 14331
28 312222
29 223212
30 1241211
```

```
32 113131
33 1111111
34 1111211
35 111
36 11
37 2
38 2
39 2
40 1
41 1
rankinweeki
rankinweeki+1
30
Figure 4: Price - Rankof Scanner Vendors in Week
                                                         i versusWeek i+1
12345678910111213141516171819202122232425262728
1 61111
2 13321
3 33121
4 1223111
5 122211
6 21512
7 112131
8 1241
9 12332
10 12232
11 11233
12 1112311
13 22122
14 1122211
15 2431
16 1242
17 2341
18 333
19 1342
20 112421
21 1241
22 1135
23 127
24 126
25 123
26 2
27 2
28 2
rankinweeki+1
rankinweeki
```

31 124121